from swarms import Agent, Anthropic from swarms.structs.round_robin import RoundRobinSwarm # Initialize the director agent director = Agent( agent_name="Director", system_prompt="Directs the tasks for the workers", llm=Anthropic(), max_loops=1, dashboard=False, streaming_on=True, verbose=True, stopping_token="", state_save_file_type="json", saved_state_path="director.json", ) # Initialize worker 1 worker1 = Agent( agent_name="Worker1", system_prompt="Generates a transcript for a youtube video on what swarms are", llm=Anthropic(), max_loops=1, dashboard=False, streaming_on=True, verbose=True, stopping_token="", state_save_file_type="json", saved_state_path="worker1.json", ) # Initialize worker 2 worker2 = Agent( agent_name="Worker2", system_prompt="Summarizes the transcript generated by Worker1", llm=Anthropic(), max_loops=1, dashboard=False, streaming_on=True, verbose=True, stopping_token="", state_save_file_type="json", saved_state_path="worker2.json", ) # Round Robin round_table = RoundRobinSwarm( agents=[director, worker1, worker2], verbose=True, max_loops=1, callback=None, ) # Run the task and get the results task = "Create a format to express and communicate swarms of llms in a structured manner for youtube" results = round_table.run(task) print("Round Robin Results:", results)