import os from dotenv import load_dotenv from swarm_models import Anthropic, OpenAIChat from swarms.prompts.ai_research_team import ( PAPER_IMPLEMENTOR_AGENT_PROMPT, PAPER_SUMMARY_ANALYZER, ) from swarms.structs import Agent from swarms.utils.pdf_to_text import pdf_to_text from swarms import rearrange # Base llms load_dotenv() anthropic_api_key = os.getenv("ANTHROPIC_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY") PDF_PATH = "fasterffn.pdf" # Base llms llm1 = OpenAIChat( openai_api_key=openai_api_key, ) llm2 = Anthropic( anthropic_api_key=anthropic_api_key, ) # Agents paper_summarizer_agent = Agent( agent_name="paper_summarizer_agent", llm=llm2, sop=PAPER_SUMMARY_ANALYZER, max_loops=1, autosave=True, saved_state_path="paper_summarizer.json", ) paper_implementor_agent = Agent( agent_name="paper_implementor_agent", llm=llm1, sop=PAPER_IMPLEMENTOR_AGENT_PROMPT, max_loops=1, autosave=True, saved_state_path="paper_implementor.json", code_interpreter=False, ) pytorch_pseudocode_agent = Agent( agent_name="pytorch_pseudocode_agent", llm=llm1, sop=PAPER_IMPLEMENTOR_AGENT_PROMPT, max_loops=1, autosave=True, saved_state_path="pytorch_pseudocode_agent.json", code_interpreter=False, ) paper = pdf_to_text(PDF_PATH) task = f""" Focus on creating the algorithmic pseudocode for the novel f" method in this paper: {paper} """ agents = [ paper_summarizer_agent, paper_implementor_agent, pytorch_pseudocode_agent, ] flow = "paper_summarizer_agent -> paper_implementor_agent -> pytorch_pseudocode_agent" swarm = rearrange(agents, flow, task) print(swarm)