import os from dotenv import load_dotenv # Import the OpenAIChat model and the Agent struct from swarms import Agent, OpenAIChat, SwarmNetwork # Load the environment variables load_dotenv() # Get the API key from the environment api_key = os.environ.get("OPENAI_API_KEY") # Initialize the language model llm = OpenAIChat( temperature=0.5, openai_api_key=api_key, ) ## Initialize the workflow agent = Agent(llm=llm, max_loops=1, agent_name="Social Media Manager") agent2 = Agent(llm=llm, max_loops=1, agent_name=" Product Manager") agent3 = Agent(llm=llm, max_loops=1, agent_name="SEO Manager") # Load the swarmnet with the agents swarmnet = SwarmNetwork( agents=[agent, agent2, agent3], ) # List the agents in the swarm network out = swarmnet.list_agents() print(out) # Run the workflow on a task out = swarmnet.run_single_agent( agent2.id, "Generate a 10,000 word blog on health and wellness." ) print(out) # Run all the agents in the swarm network on a task out = swarmnet.run_many_agents( "Generate a 10,000 word blog on health and wellness." ) print(out)