import os import asyncio import threading from swarms import Agent from swarm_models import OpenAIChat import time import psutil from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) from dotenv import load_dotenv load_dotenv() # Get the OpenAI API key from the environment variable api_key = os.getenv("OPENAI_API_KEY") # Create an instance of the OpenAIChat class model = OpenAIChat( openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 ) # Initialize the agent agent = Agent( agent_name="Financial-Analysis-Agent", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, llm=model, max_loops=1, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=True, saved_state_path="finance_agent.json", user_name="swarms_corp", retry_attempts=1, context_length=200000, return_step_meta=False, output_type="string", streaming_on=False, ) # Function to measure time and memory usage def measure_time_and_memory(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() memory_usage = psutil.Process().memory_info().rss / 1024 ** 2 print(f"Time taken: {end_time - start_time} seconds") print(f"Memory used: {memory_usage} MB") return result return wrapper # Function to run the agent asynchronously @measure_time_and_memory async def run_agent_async(): await asyncio.gather( agent.run( "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria" ) ) # Function to run the agent on another thread @measure_time_and_memory def run_agent_thread(): asyncio.run(run_agent_async()) # Run the agent asynchronously and on another thread to test the speed asyncio.run(run_agent_async()) run_agent_thread()