"""
Todo
- Add more data in RAG for hydroponic based solutions with images and very detailed captions
- Introduce JSON function calling for the diagnoser -> good / bad -> if bad then disease detecter agent
- List of common desases -> if agent picks one of those diseases -> select another of available treatments
- Fix error choice
"""

import os

from dotenv import load_dotenv

from playground.demos.plant_biologist_swarm.prompts import (
    diagnoser_agent,
    disease_detector_agent,
    growth_predictor_agent,
    harvester_agent,
    treatment_recommender_agent,
)
from swarms import Agent
from swarms.models.gpt_o import GPT4o

# Load the OpenAI API key from the .env file
load_dotenv()

# Initialize the OpenAI API key
api_key = os.environ.get("OPENAI_API_KEY")


# llm = llm,
llm = GPT4o(max_tokens=200, openai_api_key=os.getenv("OPENAI_API_KEY"))

# Initialize Diagnoser Agent
diagnoser_agent = Agent(
    agent_name="Diagnoser Agent",
    system_prompt=diagnoser_agent(),
    llm=llm,
    max_loops=1,
    dashboard=False,
    # streaming_on=True,
    # verbose=True,
    # saved_state_path="diagnoser.json",
    multi_modal=True,
    autosave=True,
)

# Initialize Harvester Agent
harvester_agent = Agent(
    agent_name="Harvester Agent",
    system_prompt=harvester_agent(),
    llm=llm,
    max_loops=1,
    dashboard=False,
    # streaming_on=True,
    # verbose=True,
    # saved_state_path="harvester.json",
    multi_modal=True,
    autosave=True,
)

# Initialize Growth Predictor Agent
growth_predictor_agent = Agent(
    agent_name="Growth Predictor Agent",
    system_prompt=growth_predictor_agent(),
    llm=llm,
    max_loops=1,
    dashboard=False,
    # streaming_on=True,
    # verbose=True,
    # saved_state_path="growth_predictor.json",
    multi_modal=True,
    autosave=True,
)

# Initialize Treatment Recommender Agent
treatment_recommender_agent = Agent(
    agent_name="Treatment Recommender Agent",
    system_prompt=treatment_recommender_agent(),
    llm=llm,
    max_loops=1,
    dashboard=False,
    # streaming_on=True,
    # verbose=True,
    # saved_state_path="treatment_recommender.json",
    multi_modal=True,
    autosave=True,
)

# Initialize Disease Detector Agent
disease_detector_agent = Agent(
    agent_name="Disease Detector Agent",
    system_prompt=disease_detector_agent(),
    llm=llm,
    max_loops=1,
    dashboard=False,
    # streaming_on=True,
    # verbose=True,
    # saved_state_path="disease_detector.json",
    multi_modal=True,
    autosave=True,
)
agents = [
    diagnoser_agent,
    disease_detector_agent,
    treatment_recommender_agent,
    growth_predictor_agent,
    harvester_agent,
]

task = "Conduct a diagnosis on the plants's symptoms, this wasn't grown in dirt, it grew from hydroponics"
img = "tomato.jpg"

loop = 0
for i in range(len(agents)):
    if i == 0:
        output = agents[i].run(task, img)
        print(output)

    else:
        output = agents[i].run(output, img)
        print(output)

    # Add extensive logging for each agent
    print(f"Agent {i+1} - {agents[i].agent_name}")
    print("-----------------------------------")