from swarms import Agent from langchain_community.llms.anthropic import Anthropic def calculate_profit(revenue: float, expenses: float): """ Calculates the profit by subtracting expenses from revenue. Args: revenue (float): The total revenue. expenses (float): The total expenses. Returns: float: The calculated profit. """ return revenue - expenses def generate_report(company_name: str, profit: float): """ Generates a report for a company's profit. Args: company_name (str): The name of the company. profit (float): The calculated profit. Returns: str: The report for the company's profit. """ return f"The profit for {company_name} is ${profit}." EMAIL_DETECT_APPOINT = """ if the user gives you an email address, then call the appointment function to schedule a meeting with the user. SCHEMA OF THE FUNCTION: """ def write_memory_to_rag(memory_name: str, memory: str): """ Writes the memory to the RAG model for fine-tuning. Args: memory_name (str): The name of the memory. memory (str): The memory to be written to the RAG model. """ # Write the memory to the RAG model for fine-tuning from playground.memory.chromadb_example import ChromaDB db = ChromaDB(output_dir=memory_name) db.add(memory) return None # Initialize the agent agent = Agent( agent_name="Accounting Assistant", system_prompt="You're the accounting agent, your purpose is to generate a profit report for a company!", agent_description="Generate a profit report for a company!", llm=Anthropic(), max_loops="auto", autosave=True, sop_list=[EMAIL_DETECT_APPOINT], # dynamic_temperature_enabled=True, dashboard=False, verbose=True, streaming_on=True, # interactive=True, # Set to False to disable interactive mode saved_state_path="accounting_agent.json", # tools=[ # # calculate_profit, # # generate_report, # # search_knowledge_base, # # write_memory_to_rag, # # search_knowledge_base, # # generate_speech, # ], stopping_token="Stop!", interactive=True, # docs_folder="docs", # pdf_path="docs/accounting_agent.pdf", # sop="Calculate the profit for a company.", # sop_list=["Calculate the profit for a company."], # user_name="User", # # docs= # # docs_folder="docs", # retry_attempts=3, # context_length=1000, # tool_schema = dict context_length=1000, # agent_ops_on=True, # tree_of_thoughts=True, # long_term_memory=ChromaDB(docs_folder="artifacts"), ) agent.run( "Search the knowledge base for the swarms github framework and how it works" )