import threading from dataclasses import dataclass, field from typing import Callable, List, Optional, Any from swarms.utils.logger import logger from swarms.structs.agent import Agent from swarms.structs.base_workflow import BaseWorkflow from swarms import OpenAIChat import os @dataclass class ConcurrentWorkflow(BaseWorkflow): """ ConcurrentWorkflow class for running a set of tasks concurrently using N number of autonomous agents. Args: max_workers (int): The maximum number of workers to use for the threading.Thread. autosave (bool): Whether to save the state of the workflow to a file. Default is False. saved_state_filepath (str): The filepath to save the state of the workflow to. Default is "runs/concurrent_workflow.json". print_results (bool): Whether to print the results of each task. Default is False. return_results (bool): Whether to return the results of each task. Default is False. use_processes (bool): Whether to use processes instead of threads. Default is False. Examples: >>> from swarms.models import OpenAIChat >>> from swarms.structs import ConcurrentWorkflow >>> llm = OpenAIChat(openai_api_key="") >>> workflow = ConcurrentWorkflow(max_workers=5, agents=[llm]) >>> workflow.run() """ max_loops: int = 1 max_workers: int = 5 autosave: bool = False agents: List[Agent] = field(default_factory=list) saved_state_filepath: Optional[str] = "runs/concurrent_workflow.json" print_results: bool = True # Modified: Set print_results to True return_results: bool = False stopping_condition: Optional[Callable] = None def run( self, task: Optional[str] = None, *args, **kwargs ) -> Optional[List[Any]]: """ Executes the tasks in parallel using multiple threads. Args: task (Optional[str]): A task description if applicable. *args: Additional arguments. **kwargs: Additional keyword arguments. Returns: Optional[List[Any]]: A list of the results of each task, if return_results is True. Otherwise, returns None. """ loop = 0 results = [] while loop < self.max_loops: if not self.agents: logger.warning("No agents found in the workflow.") break threads = [ threading.Thread( target=self.execute_agent, args=(agent, task) ) for agent in self.agents ] for thread in threads: thread.start() for thread in threads: thread.join() if self.return_results: results.extend( [ thread.result for thread in threads if hasattr(thread, "result") ] ) loop += 1 if self.stopping_condition and self.stopping_condition( results ): break return results if self.return_results else None def list_agents(self): """Prints a list of the agents in the workflow.""" for agent in self.agents: logger.info(agent) def save(self): """Saves the state of the workflow to a file.""" self.save_state(self.saved_state_filepath) def execute_agent( self, agent: Agent, task: Optional[str] = None, *args, **kwargs ): try: result = agent.run(task, *args, **kwargs) if self.print_results: logger.info(f"Agent {agent}: {result}") if self.return_results: return result except Exception as e: logger.error(f"Agent {agent} generated an exception: {e}") api_key = os.environ["OPENAI_API_KEY"] # Model swarm = ConcurrentWorkflow( agents=[ Agent( llm=OpenAIChat( openai_api_key=api_key, max_tokens=4000, ), max_loops=4, dashboard=False, ) ], ) # Run the workflow swarm.run( "Generate a report on the top 3 biggest expenses for small businesses and how businesses can save 20%" )