# Models Documentation ==================== ## Language Models --------------- Language models are the driving force of our agents. They are responsible for generating text based on a given prompt. We currently support two types of language models: Anthropic and HuggingFace. ### Anthropic The `Anthropic` class is a wrapper for the Anthropic large language models. #### Initialization ``` Anthropic(model="claude-2", max_tokens_to_sample=256, temperature=None, top_k=None, top_p=None, streaming=False, default_request_timeout=None) ``` ##### Parameters - `model` (str, optional): The name of the model to use. Default is "claude-2". - `max_tokens_to_sample` (int, optional): The maximum number of tokens to sample. Default is 256. - `temperature` (float, optional): The temperature to use for the generation. Higher values result in more random outputs. - `top_k` (int, optional): The number of top tokens to consider for the generation. - `top_p` (float, optional): The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. - `streaming` (bool, optional): Whether to use streaming mode. Default is False. - `default_request_timeout` (int, optional): The default request timeout in seconds. Default is 600. ##### Example ``` anthropic = Anthropic(model="claude-2", max_tokens_to_sample=100, temperature=0.8) ``` #### Generation ``` anthropic.generate(prompt, stop=None) ``` ##### Parameters - `prompt` (str): The prompt to use for the generation. - `stop` (list, optional): A list of stop sequences. The generation will stop if one of these sequences is encountered. ##### Returns - `str`: The generated text. ##### Example ``` prompt = "Once upon a time" stop = ["The end"] print(anthropic.generate(prompt, stop)) ``` ### HuggingFaceLLM The `HuggingFaceLLM` class is a wrapper for the HuggingFace language models. #### Initialization ``` HuggingFaceLLM(model_id: str, device: str = None, max_length: int = 20, quantize: bool = False, quantization_config: dict = None) ``` ##### Parameters - `model_id` (str): The ID of the model to use. - `device` (str, optional): The device to use for the generation. Default is "cuda" if available, otherwise "cpu". - `max_length` (int, optional): The maximum length of the generated text. Default is 20. - `quantize` (bool, optional): Whether to quantize the model. Default is False. - `quantization_config` (dict, optional): The configuration for the quantization. ##### Example ``` huggingface = HuggingFaceLLM(model_id="gpt2", device="cpu", max_length=50) ``` #### Generation ``` huggingface.generate(prompt_text: str, max_length: int = None) ``` ##### Parameters - `prompt_text` (str): The prompt to use for the generation. - `max_length` (int, optional): The maximum length of the generated text. If not provided, the default value specified during initialization is used. ##### Returns - `str`: The generated text. ##### Example ``` prompt = "Once upon a time" print(huggingface.generate(prompt)) ``` ### Full Examples ```python # Import the necessary classes from swarms.models import Anthropic, HuggingFaceLLM # Create an instance of the Anthropic class anthropic = Anthropic(model="claude-2", max_tokens_to_sample=100, temperature=0.8) # Use the Anthropic instance to generate text prompt = "Once upon a time" stop = ["The end"] print("Anthropic output:") print(anthropic.generate(prompt, stop)) # Create an instance of the HuggingFaceLLM class huggingface = HuggingFaceLLM(model_id="gpt2", device="cpu", max_length=50) # Use the HuggingFaceLLM instance to generate text prompt = "Once upon a time" print("\nHuggingFaceLLM output:") print(huggingface.generate(prompt)) ```