import os from typing import List, Dict, Any, Optional, Callable, get_type_hints from dataclasses import dataclass, field import json from datetime import datetime import inspect import typing from typing import Union from swarms import Agent from swarm_models import OpenAIChat @dataclass class ToolDefinition: name: str description: str parameters: Dict[str, Any] required_params: List[str] callable: Optional[Callable] = None def extract_type_hints(func: Callable) -> Dict[str, Any]: """Extract parameter types from function type hints.""" return typing.get_type_hints(func) def extract_tool_info(func: Callable) -> ToolDefinition: """Extract tool information from a callable function.""" # Get function name name = func.__name__ # Get docstring description = inspect.getdoc(func) or "No description available" # Get parameters and their types signature = inspect.signature(func) type_hints = extract_type_hints(func) parameters = {} required_params = [] for param_name, param in signature.parameters.items(): # Skip self parameter for methods if param_name == "self": continue param_type = type_hints.get(param_name, Any) # Handle optional parameters is_optional = ( param.default != inspect.Parameter.empty or getattr(param_type, "__origin__", None) is Union and type(None) in param_type.__args__ ) if not is_optional: required_params.append(param_name) parameters[param_name] = { "type": str(param_type), "default": ( None if param.default is inspect.Parameter.empty else param.default ), "required": not is_optional, } return ToolDefinition( name=name, description=description, parameters=parameters, required_params=required_params, callable=func, ) @dataclass class FunctionSpec: """Specification for a callable tool function.""" name: str description: str parameters: Dict[ str, dict ] # Contains type and description for each parameter return_type: str return_description: str @dataclass class ExecutionStep: """Represents a single step in the execution plan.""" step_id: int function_name: str parameters: Dict[str, Any] expected_output: str completed: bool = False result: Any = None @dataclass class ExecutionContext: """Maintains state during execution.""" task: str steps: List[ExecutionStep] = field(default_factory=list) results: Dict[int, Any] = field(default_factory=dict) current_step: int = 0 history: List[Dict[str, Any]] = field(default_factory=list) hints = get_type_hints(func) # noqa: F821 class ToolAgent: def __init__( self, functions: List[Callable], openai_api_key: str, model_name: str = "gpt-4", temperature: float = 0.1, ): self.functions = {func.__name__: func for func in functions} self.function_specs = self._analyze_functions(functions) self.model = OpenAIChat( openai_api_key=openai_api_key, model_name=model_name, temperature=temperature, ) self.system_prompt = self._create_system_prompt() self.agent = Agent( agent_name="Tool-Agent", system_prompt=self.system_prompt, llm=self.model, max_loops=1, verbose=True, ) def _analyze_functions( self, functions: List[Callable] ) -> Dict[str, FunctionSpec]: """Analyze functions to create detailed specifications.""" specs = {} for func in functions: hints = get_type_hints(func) sig = inspect.signature(func) doc = inspect.getdoc(func) or "" # Parse docstring for parameter descriptions param_descriptions = {} current_param = None for line in doc.split("\n"): if ":param" in line: param_name = ( line.split(":param")[1].split(":")[0].strip() ) desc = line.split(":", 2)[-1].strip() param_descriptions[param_name] = desc elif ":return:" in line: return_desc = line.split(":return:")[1].strip() # Build parameter specifications parameters = {} for name, param in sig.parameters.items(): param_type = hints.get(name, Any) parameters[name] = { "type": str(param_type), "type_class": param_type, "description": param_descriptions.get(name, ""), "required": param.default == param.empty, } specs[func.__name__] = FunctionSpec( name=func.__name__, description=doc.split("\n")[0], parameters=parameters, return_type=str(hints.get("return", Any)), return_description=( return_desc if "return_desc" in locals() else "" ), ) return specs def _create_system_prompt(self) -> str: """Create system prompt with detailed function specifications.""" functions_desc = [] for spec in self.function_specs.values(): params_desc = [] for name, details in spec.parameters.items(): params_desc.append( f" - {name}: {details['type']} - {details['description']}" ) functions_desc.append( f""" Function: {spec.name} Description: {spec.description} Parameters: {chr(10).join(params_desc)} Returns: {spec.return_type} - {spec.return_description} """ ) return f"""You are an AI agent that creates and executes plans using available functions. Available Functions: {chr(10).join(functions_desc)} You must respond in two formats depending on the phase: 1. Planning Phase: {{ "phase": "planning", "plan": {{ "description": "Overall plan description", "steps": [ {{ "step_id": 1, "function": "function_name", "parameters": {{ "param1": "value1", "param2": "value2" }}, "purpose": "Why this step is needed" }} ] }} }} 2. Execution Phase: {{ "phase": "execution", "analysis": "Analysis of current result", "next_action": {{ "type": "continue|request_input|complete", "reason": "Why this action was chosen", "needed_input": {{}} # If requesting input }} }} Always: - Use exact function names - Ensure parameter types match specifications - Provide clear reasoning for each decision """ def _execute_function( self, spec: FunctionSpec, parameters: Dict[str, Any] ) -> Any: """Execute a function with type checking.""" converted_params = {} for name, value in parameters.items(): param_spec = spec.parameters[name] try: # Convert value to required type param_type = param_spec["type_class"] if param_type in (int, float, str, bool): converted_params[name] = param_type(value) else: converted_params[name] = value except (ValueError, TypeError) as e: raise ValueError( f"Parameter '{name}' conversion failed: {str(e)}" ) return self.functions[spec.name](**converted_params) def run(self, task: str) -> Dict[str, Any]: """Execute task with planning and step-by-step execution.""" context = ExecutionContext(task=task) execution_log = { "task": task, "start_time": datetime.utcnow().isoformat(), "steps": [], "final_result": None, } try: # Planning phase plan_prompt = f"Create a plan to: {task}" plan_response = self.agent.run(plan_prompt) plan_data = json.loads( plan_response.replace("System:", "").strip() ) # Convert plan to execution steps for step in plan_data["plan"]["steps"]: context.steps.append( ExecutionStep( step_id=step["step_id"], function_name=step["function"], parameters=step["parameters"], expected_output=step["purpose"], ) ) # Execution phase while context.current_step < len(context.steps): step = context.steps[context.current_step] print( f"\nExecuting step {step.step_id}: {step.function_name}" ) try: # Execute function spec = self.function_specs[step.function_name] result = self._execute_function( spec, step.parameters ) context.results[step.step_id] = result step.completed = True step.result = result # Get agent's analysis analysis_prompt = f""" Step {step.step_id} completed: Function: {step.function_name} Result: {json.dumps(result)} Remaining steps: {len(context.steps) - context.current_step - 1} Analyze the result and decide next action. """ analysis_response = self.agent.run( analysis_prompt ) analysis_data = json.loads( analysis_response.replace( "System:", "" ).strip() ) execution_log["steps"].append( { "step_id": step.step_id, "function": step.function_name, "parameters": step.parameters, "result": result, "analysis": analysis_data, } ) if ( analysis_data["next_action"]["type"] == "complete" ): if ( context.current_step < len(context.steps) - 1 ): continue break context.current_step += 1 except Exception as e: print(f"Error in step {step.step_id}: {str(e)}") execution_log["steps"].append( { "step_id": step.step_id, "function": step.function_name, "parameters": step.parameters, "error": str(e), } ) raise # Final analysis final_prompt = f""" Task completed. Results: {json.dumps(context.results, indent=2)} Provide final analysis and recommendations. """ final_analysis = self.agent.run(final_prompt) execution_log["final_result"] = { "success": True, "results": context.results, "analysis": json.loads( final_analysis.replace("System:", "").strip() ), } except Exception as e: execution_log["final_result"] = { "success": False, "error": str(e), } execution_log["end_time"] = datetime.utcnow().isoformat() return execution_log def calculate_investment_return( principal: float, rate: float, years: int ) -> float: """Calculate investment return with compound interest. :param principal: Initial investment amount in dollars :param rate: Annual interest rate as decimal (e.g., 0.07 for 7%) :param years: Number of years to invest :return: Final investment value """ return principal * (1 + rate) ** years agent = ToolAgent( functions=[calculate_investment_return], openai_api_key=os.getenv("OPENAI_API_KEY"), ) result = agent.run( "Calculate returns for $10000 invested at 7% for 10 years" )