Swarms Documentation ==================== Worker Node ----------- The `WorkerNode` class is a powerful component of the Swarms framework. It is designed to spawn an autonomous agent instance as a worker to accomplish complex tasks. It can search the internet, spawn child multi-modality models to process and generate images, text, audio, and so on. ### WorkerNodeInitializer The `WorkerNodeInitializer` class is used to initialize a worker node. #### Initialization ``` WorkerNodeInitializer(openai_api_key: str, llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None, tools: Optional[List[Tool]] = None, worker_name: Optional[str] = "Swarm Worker AI Assistant", worker_role: Optional[str] = "Assistant", human_in_the_loop: Optional[bool] = False, search_kwargs: dict = {}, verbose: Optional[bool] = False, chat_history_file: str = "chat_history.txt") ``` Copy code ##### Parameters - `openai_api_key` (str): The OpenAI API key. - `llm` (Union[InMemoryDocstore, ChatOpenAI], optional): The language model to use. Default is `ChatOpenAI`. - `tools` (List[Tool], optional): The tools to use. - `worker_name` (str, optional): The name of the worker. Default is "Swarm Worker AI Assistant". - `worker_role` (str, optional): The role of the worker. Default is "Assistant". - `human_in_the_loop` (bool, optional): Whether to include a human in the loop. Default is False. - `search_kwargs` (dict, optional): The keyword arguments for the search. - `verbose` (bool, optional): Whether to print verbose output. Default is False. - `chat_history_file` (str, optional): The file to store the chat history. Default is "chat_history.txt". ##### Example ``` from swarms.agents.tools.autogpt import DuckDuckGoSearchRun worker_node_initializer = WorkerNodeInitializer(openai_api_key="your_openai_api_key", tools=[DuckDuckGoSearchRun()], worker_name="My Worker", worker_role="Assistant", human_in_the_loop=True) ``` Copy code ### WorkerNode The `WorkerNode` class is used to create a worker node. #### Initialization ``` WorkerNode(openai_api_key: str, temperature: int, llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None, tools: Optional[List[Tool]] = None, worker_name: Optional[str] = "Swarm Worker AI Assistant", worker_role: Optional[str] = "Assistant", human_in_the_loop: Optional[bool] = False, search_kwargs: dict = {}, verbose: Optional[bool] = False, chat_history_file: str = "chat_history.txt") ``` Copy code ##### Parameters - `openai_api_key` (str): The OpenAI API key. - `temperature` (int): The temperature for the language model. - `llm` (Union[InMemoryDocstore, ChatOpenAI], optional): The language model to use. Default is `ChatOpenAI`. - `tools` (List[Tool], optional): The tools to use. - `worker_name` (str, optional): The name of the worker. Default is "Swarm Worker AI Assistant". - `worker_role` (str, optional): The role of the worker. Default is "Assistant". - `human_in_the_loop` (bool, optional): Whether to include a human in the loop. Default is False. - `search_kwargs` (dict, optional): The keyword arguments for the search. - `verbose` (bool, optional): Whether to print verbose output. Default is False. - `chat_history_file` (str, optional): The file to store the chat history. Default is "chat_history.txt". ##### Example ``` worker_node = WorkerNode(openai_api_key="your_openai_api_key", temperature=0.8, tools=[DuckDuckGoSearchRun()], worker_name="My Worker", worker_role="As``` tools=[DuckDuckGoSearchRun()], worker_name="My Worker", worker_role="Assistant", human_in_the_loop=True) # Create a worker node worker_node = WorkerNode(openai_api_key="your_openai_api_key", temperature=0.8, tools=[DuckDuckGoSearchRun()], worker_name="My Worker", worker_role="Assistant", human_in_the_loop=True) # Add a tool to the worker node worker_node_initializer.add_tool(DuckDuckGoSearchRun()) # Initialize the language model and tools for the worker node worker_node.initialize_llm(ChatOpenAI, temperature=0.8) worker_node.initialize_tools(ChatOpenAI) # Create the worker node worker_node.create_worker_node(worker_name="My Worker Node", worker_role="Assistant", human_in_the_loop=True, llm_class=ChatOpenAI, search_kwargs={}) # Run the worker node `worker_node.run("Hello, world!")` In this example, we first initialize a `WorkerNodeInitializer` and a `WorkerNode`. We then add a tool to the `WorkerNodeInitializer` and initialize the language model and tools for the `WorkerNode`. Finally, we create the worker node and run it with a given prompt. This example shows how you can use the `WorkerNode` and `WorkerNodeInitializer` classes to create a worker node, add tools to it, initialize its language model and tools, and run it with a given prompt. The parameters of these classes can be customized to suit your specific needs. Thanks for becoming an alpha build user, email kye@apac.ai with all complaintssistant", human_in_the_loop=True) ``` Copy code ### Full Example Here is a full example of how to use the `WorkerNode` and `WorkerNodeInitializer` classes: ```python from swarms.agents.tools.autogpt import DuckDuckGoSearchRun from swarms.worker_node import WorkerNode, WorkerNodeInitializer # Initialize a worker node worker_node_initializer = WorkerNodeInitializer(openai_api_key="your_openai_api_key", tools=[DuckDuckGoSearchRun()], worker_name="My Worker", worker_role="Assistant", human_in_the_loop=True) # Create a worker node worker_node = WorkerNode(openai_api_key="your_openai_api_key", temperature=0.8, tools=[DuckDuckGoSearchRun()], worker_name="My Worker", worker_role="Assistant", human_in_the_loop=True) # Add a tool to the worker node worker_node_initializer.add_tool(DuckDuckGoSearchRun()) # Initialize the language model and tools for the worker node worker_node.initialize_llm(ChatOpenAI, temperature=0.8) worker_node.initialize_tools(ChatOpenAI) # Create the worker node worker_node.create_worker_node(worker_name="My Worker Node", worker_role="Assistant", human_in_the_loop=True, llm_class=ChatOpenAI, search_kwargs={}) # Run the worker node worker_node.run("Hello, world!") ``` In this example, we first initialize a `WorkerNodeInitializer` and a `WorkerNode`. We then add a tool to the `WorkerNodeInitializer` and initialize the language model and tools for the `WorkerNode`. Finally, we create the worker node and run it with a given prompt. This example shows how you can use the `WorkerNode` and `WorkerNodeInitializer` classes to create a worker node, add tools to it, initialize its language model and tools, and run it with a given prompt. The parameters of these classes can be customized to suit your specific needs.