import os from fastapi import ( FastAPI, HTTPException, status, Query, BackgroundTasks, ) from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel, Field from typing import Optional, Dict, Any, List from loguru import logger import uvicorn from datetime import datetime, timedelta from uuid import UUID, uuid4 from enum import Enum from pathlib import Path from concurrent.futures import ThreadPoolExecutor import traceback from swarms import Agent from dotenv import load_dotenv # Load environment variables load_dotenv() # Configure Loguru logger.add( "logs/api_{time}.log", rotation="500 MB", retention="10 days", level="INFO", format="{time} {level} {message}", backtrace=True, diagnose=True, ) class AgentStatus(str, Enum): """Enum for agent status.""" IDLE = "idle" PROCESSING = "processing" ERROR = "error" MAINTENANCE = "maintenance" class AgentConfig(BaseModel): """Configuration model for creating a new agent.""" agent_name: str = Field(..., description="Name of the agent") model_name: str = Field( ..., description="Name of the llm you want to use provided by litellm", ) description: str = Field( default="", description="Description of the agent's purpose" ) system_prompt: str = Field( ..., description="System prompt for the agent" ) model_name: str = Field( default="gpt-4o-mini", description="Model name to use" ) temperature: float = Field( default=0.1, ge=0.0, le=2.0, description="Temperature for the model", ) max_loops: int = Field( default=1, ge=1, description="Maximum number of loops" ) autosave: bool = Field( default=True, description="Enable autosave" ) dashboard: bool = Field( default=False, description="Enable dashboard" ) verbose: bool = Field( default=True, description="Enable verbose output" ) dynamic_temperature_enabled: bool = Field( default=True, description="Enable dynamic temperature" ) user_name: str = Field( default="default_user", description="Username for the agent" ) retry_attempts: int = Field( default=1, ge=1, description="Number of retry attempts" ) context_length: int = Field( default=200000, ge=1000, description="Context length" ) output_type: str = Field( default="string", description="Output type (string or json)" ) streaming_on: bool = Field( default=False, description="Enable streaming" ) tags: List[str] = Field( default_factory=list, description="Tags for categorizing the agent", ) auto_generate_prompt: bool = Field( default_factory=bool, description="Auto generate a prompt based on the input", ) max_tokens: int = Field( default_factory=int, description="The number of max output tokens", ) class AgentUpdate(BaseModel): """Model for updating agent configuration.""" description: Optional[str] = None system_prompt: Optional[str] = None temperature: Optional[float] = None max_loops: Optional[int] = None tags: Optional[List[str]] = None status: Optional[AgentStatus] = None class AgentSummary(BaseModel): """Summary model for agent listing.""" agent_id: UUID agent_name: str description: str created_at: datetime last_used: datetime total_completions: int tags: List[str] status: AgentStatus class AgentMetrics(BaseModel): """Model for agent performance metrics.""" total_completions: int average_response_time: float error_rate: float last_24h_completions: int total_tokens_used: int uptime_percentage: float success_rate: float peak_tokens_per_minute: int class CompletionRequest(BaseModel): """Model for completion requests.""" prompt: str = Field(..., description="The prompt to process") agent_id: UUID = Field(..., description="ID of the agent to use") max_tokens: Optional[int] = Field( None, description="Maximum tokens to generate" ) temperature_override: Optional[float] = None stream: bool = Field( default=False, description="Enable streaming response" ) class CompletionResponse(BaseModel): """Model for completion responses.""" agent_id: UUID response: str metadata: Dict[str, Any] timestamp: datetime processing_time: float token_usage: Dict[str, int] class AgentStore: """Enhanced store for managing agents.""" def __init__(self): self.agents: Dict[UUID, Agent] = {} self.agent_metadata: Dict[UUID, Dict[str, Any]] = {} self.executor = ThreadPoolExecutor(max_workers=4) self._ensure_directories() def _ensure_directories(self): """Ensure required directories exist.""" Path("logs").mkdir(exist_ok=True) Path("states").mkdir(exist_ok=True) async def create_agent(self, config: AgentConfig) -> UUID: """Create a new agent with the given configuration.""" try: agent = Agent( agent_name=config.agent_name, system_prompt=config.system_prompt, model_name=config.model_name, max_loops=config.max_loops, autosave=config.autosave, dashboard=config.dashboard, verbose=config.verbose, dynamic_temperature_enabled=config.dynamic_temperature_enabled, saved_state_path=f"states/{config.agent_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json", user_name=config.user_name, retry_attempts=config.retry_attempts, context_length=config.context_length, output_type="str", auto_generate_prompt=config.auto_generate_prompt, max_tokens=config.max_tokens, ) agent_id = uuid4() self.agents[agent_id] = agent self.agent_metadata[agent_id] = { "description": config.description, "created_at": datetime.utcnow(), "last_used": datetime.utcnow(), "total_completions": 0, "tags": config.tags, "total_tokens": 0, "error_count": 0, "response_times": [], "status": AgentStatus.IDLE, "start_time": datetime.utcnow(), "downtime": timedelta(), "successful_completions": 0, } logger.info(f"Created agent with ID: {agent_id}") return agent_id except Exception as e: logger.error(f"Error creating agent: {str(e)}") raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Failed to create agent: {str(e)}", ) async def get_agent(self, agent_id: UUID) -> Agent: """Retrieve an agent by ID.""" agent = self.agents.get(agent_id) if not agent: logger.error(f"Agent not found: {agent_id}") raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail=f"Agent {agent_id} not found", ) return agent async def update_agent( self, agent_id: UUID, update: AgentUpdate ) -> None: """Update agent configuration.""" agent = await self.get_agent(agent_id) metadata = self.agent_metadata[agent_id] if update.system_prompt: agent.system_prompt = update.system_prompt if update.temperature is not None: agent.llm.temperature = update.temperature if update.max_loops is not None: agent.max_loops = update.max_loops if update.tags is not None: metadata["tags"] = update.tags if update.description is not None: metadata["description"] = update.description if update.status is not None: metadata["status"] = update.status if update.status == AgentStatus.MAINTENANCE: metadata["downtime"] += ( datetime.utcnow() - metadata["last_used"] ) logger.info(f"Updated agent {agent_id}") async def list_agents( self, tags: Optional[List[str]] = None, status: Optional[AgentStatus] = None, ) -> List[AgentSummary]: """List all agents, optionally filtered by tags and status.""" summaries = [] for agent_id, agent in self.agents.items(): metadata = self.agent_metadata[agent_id] # Apply filters if tags and not any( tag in metadata["tags"] for tag in tags ): continue if status and metadata["status"] != status: continue summaries.append( AgentSummary( agent_id=agent_id, agent_name=agent.agent_name, description=metadata["description"], created_at=metadata["created_at"], last_used=metadata["last_used"], total_completions=metadata["total_completions"], tags=metadata["tags"], status=metadata["status"], ) ) return summaries async def get_agent_metrics(self, agent_id: UUID) -> AgentMetrics: """Get performance metrics for an agent.""" metadata = self.agent_metadata[agent_id] response_times = metadata["response_times"] # Calculate metrics total_time = datetime.utcnow() - metadata["start_time"] uptime = total_time - metadata["downtime"] uptime_percentage = ( uptime.total_seconds() / total_time.total_seconds() ) * 100 success_rate = ( metadata["successful_completions"] / metadata["total_completions"] * 100 if metadata["total_completions"] > 0 else 0 ) return AgentMetrics( total_completions=metadata["total_completions"], average_response_time=( sum(response_times) / len(response_times) if response_times else 0 ), error_rate=( metadata["error_count"] / metadata["total_completions"] if metadata["total_completions"] > 0 else 0 ), last_24h_completions=sum( 1 for t in response_times if (datetime.utcnow() - t).days < 1 ), total_tokens_used=metadata["total_tokens"], uptime_percentage=uptime_percentage, success_rate=success_rate, peak_tokens_per_minute=max( metadata.get("tokens_per_minute", [0]) ), ) async def clone_agent( self, agent_id: UUID, new_name: str ) -> UUID: """Clone an existing agent with a new name.""" original_agent = await self.get_agent(agent_id) original_metadata = self.agent_metadata[agent_id] config = AgentConfig( agent_name=new_name, description=f"Clone of {original_agent.agent_name}", system_prompt=original_agent.system_prompt, model_name=original_agent.llm.model_name, temperature=original_agent.llm.temperature, max_loops=original_agent.max_loops, tags=original_metadata["tags"], ) return await self.create_agent(config) async def delete_agent(self, agent_id: UUID) -> None: """Delete an agent.""" if agent_id not in self.agents: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail=f"Agent {agent_id} not found", ) # Clean up any resources agent = self.agents[agent_id] if agent.autosave and os.path.exists(agent.saved_state_path): os.remove(agent.saved_state_path) del self.agents[agent_id] del self.agent_metadata[agent_id] logger.info(f"Deleted agent {agent_id}") async def process_completion( self, agent: Agent, prompt: str, agent_id: UUID, max_tokens: Optional[int] = None, temperature_override: Optional[float] = None, ) -> CompletionResponse: """Process a completion request using the specified agent.""" start_time = datetime.utcnow() metadata = self.agent_metadata[agent_id] try: # Update agent status metadata["status"] = AgentStatus.PROCESSING metadata["last_used"] = start_time # Apply temporary overrides if specified original_temp = agent.llm.temperature if temperature_override is not None: agent.llm.temperature = temperature_override # Process the completion response = agent.run(prompt) # Reset overrides if temperature_override is not None: agent.llm.temperature = original_temp # Update metrics processing_time = ( datetime.utcnow() - start_time ).total_seconds() metadata["response_times"].append(processing_time) metadata["total_completions"] += 1 metadata["successful_completions"] += 1 # Estimate token usage (this is a rough estimate) prompt_tokens = len(prompt.split()) * 1.3 completion_tokens = len(response.split()) * 1.3 total_tokens = int(prompt_tokens + completion_tokens) metadata["total_tokens"] += total_tokens # Update tokens per minute tracking current_minute = datetime.utcnow().replace( second=0, microsecond=0 ) if "tokens_per_minute" not in metadata: metadata["tokens_per_minute"] = {} metadata["tokens_per_minute"][current_minute] = ( metadata["tokens_per_minute"].get(current_minute, 0) + total_tokens ) return CompletionResponse( agent_id=agent_id, response=response, metadata={ "agent_name": agent.agent_name, "model_name": agent.llm.model_name, "temperature": agent.llm.temperature, "max_loops": agent.max_loops, "context_window": agent.context_length, }, timestamp=datetime.utcnow(), processing_time=processing_time, token_usage={ "prompt_tokens": int(prompt_tokens), "completion_tokens": int(completion_tokens), "total_tokens": total_tokens, }, ) except Exception as e: metadata["error_count"] += 1 metadata["status"] = AgentStatus.ERROR logger.error( f"Error in completion processing: {str(e)}\n{traceback.format_exc()}" ) raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Error processing completion: {str(e)}", ) finally: metadata["status"] = AgentStatus.IDLE class SwarmsAPI: """Enhanced API class for Swarms agent integration.""" def __init__(self): self.app = FastAPI( title="Swarms Agent API", description="Production-grade API for Swarms agent interaction", version="1.0.0", docs_url="/v1/docs", redoc_url="/v1/redoc", ) self.store = AgentStore() # Configure CORS self.app.add_middleware( CORSMiddleware, allow_origins=[ "*" ], # Configure appropriately for production allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) self._setup_routes() def _setup_routes(self): """Set up API routes.""" @self.app.post("/v1/agent", response_model=Dict[str, UUID]) async def create_agent(config: AgentConfig): """Create a new agent with the specified configuration.""" agent_id = await self.store.create_agent(config) return {"agent_id": agent_id} @self.app.get("/v1/agents", response_model=List[AgentSummary]) async def list_agents( tags: Optional[List[str]] = Query(None), status: Optional[AgentStatus] = None, ): """List all agents, optionally filtered by tags and status.""" return await self.store.list_agents(tags, status) @self.app.patch( "/v1/agent/{agent_id}", response_model=Dict[str, str] ) async def update_agent(agent_id: UUID, update: AgentUpdate): """Update an existing agent's configuration.""" await self.store.update_agent(agent_id, update) return {"status": "updated"} @self.app.get( "/v1/agent/{agent_id}/metrics", response_model=AgentMetrics, ) async def get_agent_metrics(agent_id: UUID): """Get performance metrics for a specific agent.""" return await self.store.get_agent_metrics(agent_id) @self.app.post( "/v1/agent/{agent_id}/clone", response_model=Dict[str, UUID], ) async def clone_agent(agent_id: UUID, new_name: str): """Clone an existing agent with a new name.""" new_id = await self.store.clone_agent(agent_id, new_name) return {"agent_id": new_id} @self.app.delete("/v1/agent/{agent_id}") async def delete_agent(agent_id: UUID): """Delete an agent.""" await self.store.delete_agent(agent_id) return {"status": "deleted"} @self.app.post( "/v1/agent/completions", response_model=CompletionResponse ) async def create_completion( request: CompletionRequest, background_tasks: BackgroundTasks, ): """Process a completion request with the specified agent.""" try: agent = await self.store.get_agent(request.agent_id) # Process completion response = await self.store.process_completion( agent, request.prompt, request.agent_id, request.max_tokens, request.temperature_override, ) # Schedule background cleanup background_tasks.add_task( self._cleanup_old_metrics, request.agent_id ) return response except Exception as e: logger.error(f"Error processing completion: {str(e)}") raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Error processing completion: {str(e)}", ) @self.app.get("/v1/agent/{agent_id}/status") async def get_agent_status(agent_id: UUID): """Get the current status of an agent.""" metadata = self.store.agent_metadata.get(agent_id) if not metadata: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail=f"Agent {agent_id} not found", ) return { "agent_id": agent_id, "status": metadata["status"], "last_used": metadata["last_used"], "total_completions": metadata["total_completions"], "error_count": metadata["error_count"], } async def _cleanup_old_metrics(self, agent_id: UUID): """Clean up old metrics data to prevent memory bloat.""" metadata = self.store.agent_metadata.get(agent_id) if metadata: # Keep only last 24 hours of response times cutoff = datetime.utcnow() - timedelta(days=1) metadata["response_times"] = [ t for t in metadata["response_times"] if isinstance(t, (int, float)) and t > cutoff.timestamp() ] # Clean up old tokens per minute data if "tokens_per_minute" in metadata: metadata["tokens_per_minute"] = { k: v for k, v in metadata["tokens_per_minute"].items() if k > cutoff } def create_app() -> FastAPI: """Create and configure the FastAPI application.""" api = SwarmsAPI() return api.app if __name__ == "__main__": # Configure uvicorn logging logger.info("API Starting") uvicorn.run( "main:create_app", host="0.0.0.0", port=8000, reload=True, workers=4, )