import os from dotenv import load_dotenv from swarms.models import OpenAIChat, GPT4VisionAPI from swarms.structs import Agent, SequentialWorkflow import swarms.prompts.urban_planning as upp # Load environment variables load_dotenv() api_key = os.getenv("OPENAI_API_KEY") stability_api_key = os.getenv("STABILITY_API_KEY") # Initialize language model llm = OpenAIChat( openai_api_key=api_key, temperature=0.5, max_tokens=3000 ) # Initialize Vision model vision_api = GPT4VisionAPI(api_key=api_key) # Initialize agents for urban planning tasks architecture_analysis_agent = Agent( llm=llm, max_loops=1, sop=upp.ARCHITECTURE_ANALYSIS_PROMPT ) infrastructure_evaluation_agent = Agent( llm=llm, max_loops=1, sop=upp.INFRASTRUCTURE_EVALUATION_PROMPT ) traffic_flow_analysis_agent = Agent( llm=llm, max_loops=1, sop=upp.TRAFFIC_FLOW_ANALYSIS_PROMPT ) environmental_impact_assessment_agent = Agent( llm=llm, max_loops=1, sop=upp.ENVIRONMENTAL_IMPACT_ASSESSMENT_PROMPT, ) public_space_utilization_agent = Agent( llm=llm, max_loops=1, sop=upp.PUBLIC_SPACE_UTILIZATION_PROMPT ) socioeconomic_impact_analysis_agent = Agent( llm=llm, max_loops=1, sop=upp.SOCIOECONOMIC_IMPACT_ANALYSIS_PROMPT ) # Initialize the final planning agent final_plan_agent = Agent( llm=llm, max_loops=1, sop=upp.FINAL_URBAN_IMPROVEMENT_PLAN_PROMPT ) # Create Sequential Workflow workflow = SequentialWorkflow(max_loops=1) # Add tasks to workflow with personalized prompts workflow.add(architecture_analysis_agent, "Architecture Analysis") workflow.add( infrastructure_evaluation_agent, "Infrastructure Evaluation" ) workflow.add(traffic_flow_analysis_agent, "Traffic Flow Analysis") workflow.add( environmental_impact_assessment_agent, "Environmental Impact Assessment", ) workflow.add( public_space_utilization_agent, "Public Space Utilization" ) workflow.add( socioeconomic_impact_analysis_agent, "Socioeconomic Impact Analysis", ) workflow.add( final_plan_agent, ( "Generate the final urban improvement plan based on all" " previous agent's findings" ), ) # Run the workflow for individual analysis tasks # Execute the workflow for the final planning workflow.run() # Output results for each task and the final plan for task in workflow.tasks: print( f"Task Description: {task.description}\nResult:" f" {task.result}\n" )