import os from swarms import Agent, Anthropic, MultiAgentCollaboration from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) # Initialize the agent fiancial_analyst = Agent( agent_name="Financial-Analysis-Agent", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, llm=Anthropic(anthropic_api_key=os.getenv("ANTHROPIC_API_KEY")), max_loops="auto", autosave=True, # dynamic_temperature_enabled=True, dashboard=False, verbose=True, streaming_on=True, # interactive=True, # Set to False to disable interactive mode dynamic_temperature_enabled=True, saved_state_path="finance_agent.json", # tools=[Add your functions here# ], # stopping_token="Stop!", # interactive=True, # docs_folder="docs", # Enter your folder name # pdf_path="docs/finance_agent.pdf", # sop="Calculate the profit for a company.", # sop_list=["Calculate the profit for a company."], user_name="swarms_corp", # # docs= # # docs_folder="docs", retry_attempts=3, # context_length=1000, # tool_schema = dict context_length=200000, # agent_ops_on=True, # long_term_memory=ChromaDB(docs_folder="artifacts"), ) # Initialize the agent fiancial_director = Agent( agent_name="Financial-Analysis-Agent", system_prompt="Your the financial director" + FINANCIAL_AGENT_SYS_PROMPT, llm=Anthropic(anthropic_api_key=os.getenv("ANTHROPIC_API_KEY")), max_loops="auto", autosave=True, # dynamic_temperature_enabled=True, dashboard=False, verbose=True, streaming_on=True, # interactive=True, # Set to False to disable interactive mode dynamic_temperature_enabled=True, saved_state_path="finance_agent.json", # tools=[Add your functions here# ], # stopping_token="Stop!", # interactive=True, # docs_folder="docs", # Enter your folder name # pdf_path="docs/finance_agent.pdf", # sop="Calculate the profit for a company.", # sop_list=["Calculate the profit for a company."], user_name="swarms_corp", # # docs= # # docs_folder="docs", retry_attempts=3, # context_length=1000, # tool_schema = dict context_length=200000, # agent_ops_on=True, # long_term_memory=ChromaDB(docs_folder="artifacts"), ) swarm = MultiAgentCollaboration( agents=[fiancial_analyst, fiancial_director], select_next_speaker="longest_response", max_loops=10, )