from swarms.models import OpenAI from swarms.structs import Flow from langchain.schema.messages import ChatMessage, BaseMessage import os from dotenv import load_dotenv load_dotenv() message: BaseMessage = [ ChatMessage(role="user", content='Translate the following English text to French: Hello World"') ] api_key = os.environ.get("OPENAI_API_KEY") # Initialize the language model, this model can be swapped out with Anthropic, ETC, Huggingface Models like Mistral, ETC llm = OpenAI( # model_name="gpt-4" # openai_api_key=api_key, temperature=0.5, # max_tokens=100, ) @tool def search_api(query: str): """ This is a search API, you can search the web for information. """ pass ## Initialize the workflow flow = Flow( llm=llm, max_loops=2, dashboard=True, tools = [search_api] # stopping_condition=None, # You can define a stopping condition as needed. # loop_interval=1, # retry_attempts=3, # retry_interval=1, # interactive=False, # Set to 'True' for interactive mode. # dynamic_temperature=False, # Set to 'True' for dynamic temperature handling. ) # out = flow.load_state("flow_state.json") # temp = flow.dynamic_temperature() # filter = flow.add_response_filter("Trump") out = flow.run(message) # out = flow.validate_response(out) # out = flow.analyze_feedback(out) # out = flow.print_history_and_memory() # # out = flow.save_state("flow_state.json") # print(out)