import os from dotenv import load_dotenv from swarms import Agent, SequentialWorkflow from swarm_models import OpenAIChat load_dotenv() # Get the OpenAI API key from the environment variable api_key = os.getenv("GROQ_API_KEY") # Model model = OpenAIChat( openai_api_base="https://api.groq.com/openai/v1", openai_api_key=api_key, model_name="llama-3.1-70b-versatile", temperature=0.1, ) # Initialize specialized agents data_extractor_agent = Agent( agent_name="Data-Extractor", system_prompt=None, llm=model, max_loops=1, autosave=True, verbose=True, dynamic_temperature_enabled=True, saved_state_path="data_extractor_agent.json", user_name="pe_firm", retry_attempts=1, context_length=200000, output_type="string", ) summarizer_agent = Agent( agent_name="Document-Summarizer", system_prompt=None, llm=model, max_loops=1, autosave=True, verbose=True, dynamic_temperature_enabled=True, saved_state_path="summarizer_agent.json", user_name="pe_firm", retry_attempts=1, context_length=200000, output_type="string", ) financial_analyst_agent = Agent( agent_name="Financial-Analyst", system_prompt=None, llm=model, max_loops=1, autosave=True, verbose=True, dynamic_temperature_enabled=True, saved_state_path="financial_analyst_agent.json", user_name="pe_firm", retry_attempts=1, context_length=200000, output_type="string", ) market_analyst_agent = Agent( agent_name="Market-Analyst", system_prompt=None, llm=model, max_loops=1, autosave=True, verbose=True, dynamic_temperature_enabled=True, saved_state_path="market_analyst_agent.json", user_name="pe_firm", retry_attempts=1, context_length=200000, output_type="string", ) operational_analyst_agent = Agent( agent_name="Operational-Analyst", system_prompt=None, llm=model, max_loops=1, autosave=True, verbose=True, dynamic_temperature_enabled=True, saved_state_path="operational_analyst_agent.json", user_name="pe_firm", retry_attempts=1, context_length=200000, output_type="string", ) # Initialize the SwarmRouter router = SequentialWorkflow( name="pe-document-analysis-swarm", description="Analyze documents for private equity due diligence and investment decision-making", max_loops=1, agents=[ data_extractor_agent, summarizer_agent, financial_analyst_agent, market_analyst_agent, operational_analyst_agent, ], output_type="all", ) # Example usage if __name__ == "__main__": # Run a comprehensive private equity document analysis task result = router.run( "Where is the best place to find template term sheets for series A startups. Provide links and references" ) print(result)