import json import os from swarms import Agent, OpenAIChat from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) import asyncio from swarms.telemetry.async_log_telemetry import send_telemetry # Get the OpenAI API key from the environment variable api_key = os.getenv("OPENAI_API_KEY") # Create an instance of the OpenAIChat class model = OpenAIChat( api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 ) # Initialize the agent agent = Agent( agent_name="Financial-Analysis-Agent-General-11", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, llm=model, max_loops=1, autosave=False, dashboard=False, verbose=True, # interactive=True, # Set to False to disable interactive mode dynamic_temperature_enabled=True, saved_state_path="finance_agent.json", # tools=[#Add your functions here# ], # stopping_token="Stop!", # docs_folder="docs", # Enter your folder name # pdf_path="docs/finance_agent.pdf", # sop="Calculate the profit for a company.", # sop_list=["Calculate the profit for a company."], user_name="swarms_corp", # # docs="", retry_attempts=3, # context_length=1000, # tool_schema = dict context_length=200000, tool_system_prompt=None, ) # # Convert the agent object to a dictionary data = agent.to_dict() data = json.dumps(data) # Async async def send_data(): response_status, response_data = await send_telemetry(data) print(response_status, response_data) # Run the async function asyncio.run(send_data())