import os from dotenv import load_dotenv from swarm_models import OpenAIChat from swarms.structs.agent import Agent from swarms.structs.groupchat import GroupChat, expertise_based def setup_test_agents(): model = OpenAIChat( openai_api_key=os.getenv("OPENAI_API_KEY"), model_name="gpt-4", temperature=0.1, ) return [ Agent( agent_name="Agent1", system_prompt="You only respond with 'A'", llm=model, ), Agent( agent_name="Agent2", system_prompt="You only respond with 'B'", llm=model, ), Agent( agent_name="Agent3", system_prompt="You only respond with 'C'", llm=model, ), ] def test_round_robin_speaking(): chat = GroupChat(agents=setup_test_agents()) history = chat.run("Say your letter") # Verify agents speak in order responses = [ r.message for t in history.turns for r in t.responses ] assert responses == ["A", "B", "C"] * (len(history.turns)) def test_concurrent_processing(): chat = GroupChat(agents=setup_test_agents()) tasks = ["Task1", "Task2", "Task3"] histories = chat.concurrent_run(tasks) assert len(histories) == len(tasks) for history in histories: assert history.total_messages > 0 def test_expertise_based_speaking(): agents = setup_test_agents() chat = GroupChat(agents=agents, speaker_fn=expertise_based) # Test each agent's expertise trigger for agent in agents: history = chat.run(f"Trigger {agent.system_prompt}") first_response = history.turns[0].responses[0] assert first_response.agent_name == agent.agent_name def test_max_turns_limit(): max_turns = 3 chat = GroupChat(agents=setup_test_agents(), max_turns=max_turns) history = chat.run("Test message") assert len(history.turns) == max_turns def test_error_handling(): broken_agent = Agent( agent_name="BrokenAgent", system_prompt="You raise errors", llm=None, ) chat = GroupChat(agents=[broken_agent]) history = chat.run("Trigger error") assert "Error" in history.turns[0].responses[0].message def test_conversation_context(): agents = setup_test_agents() complex_prompt = "Previous message refers to A. Now trigger B. Finally discuss C." chat = GroupChat(agents=agents, speaker_fn=expertise_based) history = chat.run(complex_prompt) responses = [ r.agent_name for t in history.turns for r in t.responses ] assert all(agent.agent_name in responses for agent in agents) def test_large_agent_group(): large_group = setup_test_agents() * 5 # 15 agents chat = GroupChat(agents=large_group) history = chat.run("Test scaling") assert history.total_messages > len(large_group) def test_long_conversations(): chat = GroupChat(agents=setup_test_agents(), max_turns=50) history = chat.run("Long conversation test") assert len(history.turns) == 50 assert history.total_messages > 100 def test_stress_batched_runs(): chat = GroupChat(agents=setup_test_agents()) tasks = ["Task"] * 100 histories = chat.batched_run(tasks) assert len(histories) == len(tasks) total_messages = sum(h.total_messages for h in histories) assert total_messages > len(tasks) * 3 if __name__ == "__main__": load_dotenv() functions = [ test_round_robin_speaking, test_concurrent_processing, test_expertise_based_speaking, test_max_turns_limit, test_error_handling, test_conversation_context, test_large_agent_group, test_long_conversations, test_stress_batched_runs, ] for func in functions: try: print(f"Running {func.__name__}...") func() print("✓ Passed") except Exception as e: print(f"✗ Failed: {str(e)}")