import gradio as gr
from swarms.tools.tools_controller import MTQuestionAnswerer, load_valid_tools
from swarms.tools.singletool import STQuestionAnswerer
from langchain.schema import AgentFinish
import os
import requests

available_models = ["ChatGPT", "GPT-3.5"]
DEFAULTMODEL = "ChatGPT"  # "GPT-3.5"

tools_mappings = {
    "klarna": "https://www.klarna.com/",
    "weather": "http://127.0.0.1:8079/tools/weather/",
    # "database": "http://127.0.0.1:8079/tools/database/",
    # "db_diag": "http://127.0.0.1:8079/tools/db_diag/",
    "chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/",
    "douban-film": "http://127.0.0.1:8079/tools/douban-film/",
    "wikipedia": "http://127.0.0.1:8079/tools/wikipedia/",
    # "wikidata": "http://127.0.0.1:8079/tools/wikidata/",
    "wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/",
    "bing_search": "http://127.0.0.1:8079/tools/bing_search/",
    "office-ppt": "http://127.0.0.1:8079/tools/office-ppt/",
    "stock": "http://127.0.0.1:8079/tools/stock/",
    "bing_map": "http://127.0.0.1:8079/tools/bing_map/",
    # "baidu_map": "http://127.0.0.1:8079/tools/baidu_map/",
    "zillow": "http://127.0.0.1:8079/tools/zillow/",
    "airbnb": "http://127.0.0.1:8079/tools/airbnb/",
    "job_search": "http://127.0.0.1:8079/tools/job_search/",
    # "baidu-translation": "http://127.0.0.1:8079/tools/baidu-translation/",
    # "nllb-translation": "http://127.0.0.1:8079/tools/nllb-translation/",
    "tutorial": "http://127.0.0.1:8079/tools/tutorial/",
    "file_operation": "http://127.0.0.1:8079/tools/file_operation/",
    "meta_analysis": "http://127.0.0.1:8079/tools/meta_analysis/",
    "code_interpreter": "http://127.0.0.1:8079/tools/code_interpreter/",
    "arxiv": "http://127.0.0.1:8079/tools/arxiv/",
    "google_places": "http://127.0.0.1:8079/tools/google_places/",
    "google_serper": "http://127.0.0.1:8079/tools/google_serper/",
    "google_scholar": "http://127.0.0.1:8079/tools/google_scholar/",
    "python": "http://127.0.0.1:8079/tools/python/",
    "sceneXplain": "http://127.0.0.1:8079/tools/sceneXplain/",
    "shell": "http://127.0.0.1:8079/tools/shell/",
    "image_generation": "http://127.0.0.1:8079/tools/image_generation/",
    "hugging_tools": "http://127.0.0.1:8079/tools/hugging_tools/",
    "gradio_tools": "http://127.0.0.1:8079/tools/gradio_tools/",
}

valid_tools_info = load_valid_tools(tools_mappings)
print(valid_tools_info)
all_tools_list = sorted(list(valid_tools_info.keys()))

gr.close_all()

MAX_TURNS = 30
MAX_BOXES = MAX_TURNS * 2

return_msg = []
chat_history = ""


def show_avatar_imgs(tools_chosen):
    if len(tools_chosen) == 0:
        tools_chosen = list(valid_tools_info.keys())
    img_template = '<a href="{}" style="float: left"> <img style="margin:5px" src="{}.png" width="24" height="24" alt="avatar" /> {} </a>'
    imgs = [
        valid_tools_info[tool]["avatar"]
        for tool in tools_chosen
        if valid_tools_info[tool]["avatar"] != None
    ]
    imgs = " ".join(
        [img_template.format(img, img, tool) for img, tool in zip(imgs, tools_chosen)]
    )
    return [
        gr.update(value='<span class="">' + imgs + "</span>", visible=True),
        gr.update(visible=True),
    ]


def answer_by_tools(question, tools_chosen, model_chosen):
    global return_msg
    return_msg += [(question, None), (None, "...")]
    yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
    OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")

    if (
        len(tools_chosen) == 0
    ):  # if there is no tools chosen, we use all todo (TODO: What if the pool is too large.)
        tools_chosen = list(valid_tools_info.keys())

    if len(tools_chosen) == 1:
        answerer = STQuestionAnswerer(
            OPENAI_API_KEY.strip(), stream_output=True, llm=model_chosen
        )
        agent_executor = answerer.load_tools(
            tools_chosen[0],
            valid_tools_info[tools_chosen[0]],
            prompt_type="react-with-tool-description",
            return_intermediate_steps=True,
        )
    else:
        answerer = MTQuestionAnswerer(
            OPENAI_API_KEY.strip(),
            load_valid_tools({k: tools_mappings[k] for k in tools_chosen}),
            stream_output=True,
            llm=model_chosen,
        )

        agent_executor = answerer.build_runner()

    global chat_history
    chat_history += "Question: " + question + "\n"
    question = chat_history
    for inter in agent_executor(question):
        if isinstance(inter, AgentFinish):
            continue
        result_str = []
        return_msg.pop()
        if isinstance(inter, dict):
            result_str.append(
                "<font color=red>Answer:</font> {}".format(inter["output"])
            )
            chat_history += "Answer:" + inter["output"] + "\n"
            result_str.append("...")
        else:
            not_observation = inter[0].log
            if not not_observation.startswith("Thought:"):
                not_observation = "Thought: " + not_observation
            chat_history += not_observation
            not_observation = not_observation.replace(
                "Thought:", "<font color=green>Thought: </font>"
            )
            not_observation = not_observation.replace(
                "Action:", "<font color=purple>Action: </font>"
            )
            not_observation = not_observation.replace(
                "Action Input:", "<font color=purple>Action Input: </font>"
            )
            result_str.append("{}".format(not_observation))
            result_str.append(
                "<font color=blue>Action output:</font>\n{}".format(inter[1])
            )
            chat_history += "\nAction output:" + inter[1] + "\n"
            result_str.append("...")
        return_msg += [(None, result) for result in result_str]
        yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
    return_msg.pop()
    if return_msg[-1][1].startswith("<font color=red>Answer:</font> "):
        return_msg[-1] = (
            return_msg[-1][0],
            return_msg[-1][1].replace(
                "<font color=red>Answer:</font> ",
                "<font color=green>Final Answer:</font> ",
            ),
        )
    yield [
        gr.update(visible=True, value=return_msg),
        gr.update(visible=True),
        gr.update(visible=False),
    ]


def retrieve(tools_search):
    if tools_search == "":
        return gr.update(choices=all_tools_list)
    else:
        url = "http://127.0.0.1:8079/retrieve"
        param = {"query": tools_search}
        response = requests.post(url, json=param)
        result = response.json()
        retrieved_tools = result["tools"]
        return gr.update(choices=retrieved_tools)


def clear_retrieve():
    return [gr.update(value=""), gr.update(choices=all_tools_list)]


def clear_history():
    global return_msg
    global chat_history
    return_msg = []
    chat_history = ""
    yield gr.update(visible=True, value=return_msg)


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=14):
            gr.Markdown("<h1 align='left'> Swarm Tools </h1>")
        with gr.Column(scale=1):
            gr.Image(
                "../../images/swarmslogobanner.png",
                show_download_button=False,
                show_label=False,
            )
            # gr.Markdown('<img src="../../images/swarmslogobanner.png" alt="swarms">')
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Row():
                with gr.Column(scale=0.85):
                    txt = gr.Textbox(
                        show_label=False,
                        placeholder="Question here. Use Shift+Enter to add new line.",
                        lines=1,
                    ).style(container=False)
                with gr.Column(scale=0.15, min_width=0):
                    buttonChat = gr.Button("Chat")

            chatbot = gr.Chatbot(show_label=False, visible=True).style(height=600)
            buttonClear = gr.Button("Clear History")
            buttonStop = gr.Button("Stop", visible=False)

        with gr.Column(scale=1):
            model_chosen = gr.Dropdown(
                list(available_models),
                value=DEFAULTMODEL,
                multiselect=False,
                label="Model provided",
                info="Choose the model to solve your question, Default means ChatGPT.",
            )
            with gr.Row():
                tools_search = gr.Textbox(
                    lines=1,
                    label="Tools Search",
                    placeholder="Please input some text to search tools.",
                )
                buttonSearch = gr.Button("Reset search condition")
            tools_chosen = gr.CheckboxGroup(
                choices=all_tools_list,
                value=["chemical-prop"],
                label="Tools provided",
                info="Choose the tools to solve your question.",
            )

    tools_search.change(retrieve, tools_search, tools_chosen)
    buttonSearch.click(clear_retrieve, [], [tools_search, tools_chosen])

    txt.submit(
        lambda: [
            gr.update(value=""),
            gr.update(visible=False),
            gr.update(visible=True),
        ],
        [],
        [txt, buttonClear, buttonStop],
    )
    inference_event = txt.submit(
        answer_by_tools,
        [txt, tools_chosen, model_chosen],
        [chatbot, buttonClear, buttonStop],
    )
    buttonChat.click(
        answer_by_tools,
        [txt, tools_chosen, model_chosen],
        [chatbot, buttonClear, buttonStop],
    )
    buttonStop.click(
        lambda: [gr.update(visible=True), gr.update(visible=False)],
        [],
        [buttonClear, buttonStop],
        cancels=[inference_event],
    )
    buttonClear.click(clear_history, [], chatbot)

demo.queue().launch(
    share=False, inbrowser=True, server_name="127.0.0.1", server_port=7001
)