import os from swarms.utils.pandas_utils import ( display_agents_info, dict_to_dataframe, pydantic_model_to_dataframe, ) from swarms import Agent from swarm_models import OpenAIChat # Create an instance of the OpenAIChat class llm = OpenAIChat( api_key=os.getenv("OPENAI_API_KEY"), model_name="gpt-4o-mini", temperature=0.1, ) # Initialize the director agent # Initialize the director agent director = Agent( agent_name="Director", system_prompt="Directs the tasks for the accountants", llm=llm, max_loops=1, dashboard=False, state_save_file_type="json", saved_state_path="director.json", ) # Initialize accountant 1 accountant1 = Agent( agent_name="Accountant1", system_prompt="Prepares financial statements", llm=llm, max_loops=1, dashboard=False, state_save_file_type="json", saved_state_path="accountant1.json", ) # Initialize accountant 2 accountant2 = Agent( agent_name="Accountant2", system_prompt="Audits financial records", llm=llm, max_loops=1, dashboard=False, state_save_file_type="json", saved_state_path="accountant2.json", ) # Initialize 8 more specialized agents balance_sheet_analyzer = Agent( agent_name="BalanceSheetAnalyzer", system_prompt="Analyzes balance sheets", llm=llm, max_loops=1, dashboard=False, state_save_file_type="json", saved_state_path="balance_sheet_analyzer.json", ) income_statement_analyzer = Agent( agent_name="IncomeStatementAnalyzer", system_prompt="Analyzes income statements", llm=llm, max_loops=1, dashboard=False, state_save_file_type="json", saved_state_path="income_statement_analyzer.json", ) cash_flow_analyzer = Agent( agent_name="CashFlowAnalyzer", system_prompt="Analyzes cash flow statements", llm=llm, max_loops=1, dashboard=False, state_save_file_type="json", saved_state_path="cash_flow_analyzer.json", ) financial_ratio_calculator = Agent( agent_name="FinancialRatioCalculator", system_prompt="Calculates financial ratios", llm=llm, max_loops=1, dashboard=False, state_save_file_type="json", saved_state_path="financial_ratio_calculator.json", ) tax_preparer = Agent( agent_name="TaxPreparer", system_prompt="Prepares tax returns", llm=llm, max_loops=1, dashboard=False, state_save_file_type="json", saved_state_path="tax_preparer.json", ) payroll_processor = Agent( agent_name="PayrollProcessor", system_prompt="Processes payroll", llm=llm, max_loops=1, dashboard=False, state_save_file_type="json", saved_state_path="payroll_processor.json", ) inventory_manager = Agent( agent_name="InventoryManager", system_prompt="Manages inventory", llm=llm, max_loops=1, dashboard=False, state_save_file_type="json", saved_state_path="inventory_manager.json", ) budget_planner = Agent( agent_name="BudgetPlanner", system_prompt="Plans budgets", llm=llm, max_loops=1, dashboard=False, state_save_file_type="json", saved_state_path="budget_planner.json", ) agents = [ director, accountant1, accountant2, balance_sheet_analyzer, income_statement_analyzer, cash_flow_analyzer, financial_ratio_calculator, tax_preparer, payroll_processor, inventory_manager, budget_planner, ] out = display_agents_info(agents) print(out) # Dict to DataFrame data_dict = director.agent_output.model_dump() print(data_dict) df = dict_to_dataframe(data_dict) print(df) # Pydantic Model to DataFrame df = pydantic_model_to_dataframe(director.agent_output) print(df)