from swarms import Agent from swarm_models import OpenAIChat from swarms_memory import ChromaDB import os # Initialize memory for agents memory_risk = ChromaDB(metric="cosine", output_dir="risk_analysis_results") memory_sustainability = ChromaDB(metric="cosine", output_dir="sustainability_results") # Initialize model model = OpenAIChat(api_key=os.getenv("OPENAI_API_KEY"), model_name="gpt-4o-mini", temperature=0.1) # Initialize Risk Analysis Agent risk_analysis_agent = Agent( agent_name="Delaware-C-Corp-Risk-Analysis-Agent", system_prompt="You are a specialized risk analysis agent focused on assessing risks.", agent_description="Performs risk analysis for Delaware C Corps.", llm=model, max_loops=3, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=True, saved_state_path="delaware_c_corp_risk_analysis_agent.json", user_name="risk_analyst_user", retry_attempts=2, context_length=200000, long_term_memory=memory_risk, ) # Initialize Sustainability Agent sustainability_agent = Agent( agent_name="Delaware-C-Corp-Sustainability-Agent", system_prompt="You are a sustainability analysis agent focused on ESG factors.", agent_description="Analyzes sustainability practices for Delaware C Corps.", llm=model, max_loops=2, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=False, saved_state_path="delaware_c_corp_sustainability_agent.json", user_name="sustainability_specialist", retry_attempts=3, context_length=180000, long_term_memory=memory_sustainability, ) # Run the agents risk_analysis_agent.run("What are the top financial and operational risks for a Delaware C Corp in healthcare?") sustainability_agent.run("How can a Delaware C Corp in manufacturing improve its sustainability practices?") from reflection_tuner import ReflectionTuner # Initialize Reflection Tuners for each agent risk_reflection_tuner = ReflectionTuner(risk_analysis_agent, reflection_steps=2) sustainability_reflection_tuner = ReflectionTuner(sustainability_agent, reflection_steps=2) # Run the agents with Reflection Tuning risk_response = risk_reflection_tuner.reflect_and_tune("What are the top financial and operational risks for a Delaware C Corp in healthcare?") sustainability_response = sustainability_reflection_tuner.reflect_and_tune("How can a Delaware C Corp in manufacturing improve its sustainability practices?") print("Risk Analysis Agent Response:", risk_response) print("Sustainability Agent Response:", sustainability_response) # Initialize agents from agents_with_new.yaml # Import ReflectionTuner from reflection_tuner import ReflectionTuner # Initialize Reflection Tuner for all agents, including existing ones deduction_agent = Agent( agent_name="Delaware-C-Corp-Tax-Deduction-Agent", system_prompt="Provide expert advice on tax deductions for Delaware C Corps.", agent_description="Analyzes tax deduction strategies.", llm=model, max_loops=1, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=True, saved_state_path="delaware_c_corp_tax_deduction_agent.json", user_name="swarms_corp", retry_attempts=1, context_length=250000, long_term_memory=memory_risk, # Reuse memory for testing purposes ) optimization_agent = Agent( agent_name="Delaware-C-Corp-Tax-Optimization-Agent", system_prompt="Provide expert advice on tax optimization strategies for Delaware C Corps.", agent_description="Analyzes tax optimization.", llm=model, max_loops=2, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=False, saved_state_path="delaware_c_corp_tax_optimization_agent.json", user_name="tax_optimization_user", retry_attempts=3, context_length=200000, long_term_memory=memory_risk, ) # Initialize Reflection Tuners deduction_reflection_tuner = ReflectionTuner(deduction_agent, reflection_steps=2) optimization_reflection_tuner = ReflectionTuner(optimization_agent, reflection_steps=2) # Run agents with Reflection Tuning deduction_response = deduction_reflection_tuner.reflect_and_tune("What are the most effective tax deduction strategies for a Delaware C Corp in tech?") optimization_response = optimization_reflection_tuner.reflect_and_tune("How can a Delaware C Corp in finance optimize its tax strategy?") print("Tax Deduction Agent Response:", deduction_response) print("Tax Optimization Agent Response:", optimization_response)