In this section, we present a diverse collection of unique swarms, each with its own distinct characteristics and applications. These examples are designed to illustrate the versatility and potential of swarm intelligence in various domains. By exploring these examples, you can gain a deeper understanding of how swarms can be leveraged to solve complex problems and improve decision-making processes. # Documentation ## Table of Contents 1. [Common Parameters](#common-parameters) 2. [Basic Swarm Patterns](#basic-swarm-patterns) 3. [Mathematical Swarm Patterns](#mathematical-swarm-patterns) 4. [Advanced Swarm Patterns](#advanced-swarm-patterns) 5. [Communication Patterns](#communication-patterns) 6. [Best Practices](#best-practices) 7. [Common Use Cases](#common-use-cases) ## Common Parameters All swarm architectures accept these base parameters: - `agents: AgentListType` - List of Agent objects to participate in the swarm - `tasks: List[str]` - List of tasks to be processed by the agents - `return_full_history: bool` (optional) - If True, returns conversation history. Defaults to True Return types are generally `Union[dict, List[str]]`, where: - If `return_full_history=True`: Returns a dictionary containing the full conversation history - If `return_full_history=False`: Returns a list of agent responses ## Basic Swarm Patterns ### Circular Swarm ```python def circular_swarm(agents: AgentListType, tasks: List[str], return_full_history: bool = True) ``` **Information Flow:** ```mermaid flowchart LR subgraph Circular Flow A1((Agent 1)) --> A2((Agent 2)) A2 --> A3((Agent 3)) A3 --> A4((Agent 4)) A4 --> A1 end Task1[Task 1] --> A1 Task2[Task 2] --> A2 Task3[Task 3] --> A3 ``` **Best Used When:** - You need continuous processing of tasks - Tasks need to be processed by every agent in sequence - You want predictable, ordered task distribution **Key Features:** - Tasks move in a circular pattern through all agents - Each agent processes each task once - Maintains strict ordering of task processing ### Star Swarm ```python def star_swarm(agents: AgentListType, tasks: List[str], return_full_history: bool = True) ``` **Information Flow:** ```mermaid flowchart TD subgraph Star Pattern A1((Central Agent)) A2((Agent 2)) A3((Agent 3)) A4((Agent 4)) A5((Agent 5)) A1 --> A2 A1 --> A3 A1 --> A4 A1 --> A5 end Task[Initial Task] --> A1 A2 --> Result2[Result 2] A3 --> Result3[Result 3] A4 --> Result4[Result 4] A5 --> Result5[Result 5] ``` **Best Used When:** - You need centralized control - Tasks require coordination or oversight - You want to maintain a single point of task distribution ### Mesh Swarm ```python def mesh_swarm(agents: AgentListType, tasks: List[str], return_full_history: bool = True) ``` **Information Flow:** ```mermaid flowchart TD subgraph Mesh Network A1((Agent 1)) <--> A2((Agent 2)) A2 <--> A3((Agent 3)) A1 <--> A4((Agent 4)) A2 <--> A5((Agent 5)) A3 <--> A6((Agent 6)) A4 <--> A5 A5 <--> A6 end Tasks[Task Pool] --> A1 Tasks --> A2 Tasks --> A3 Tasks --> A4 Tasks --> A5 Tasks --> A6 ``` **Best Used When:** - You need maximum flexibility - Task processing order isn't critical - You want fault tolerance ## Mathematical Swarm Patterns ### Fibonacci Swarm ```python def fibonacci_swarm(agents: AgentListType, tasks: List[str]) ``` **Information Flow:** ```mermaid flowchart TD subgraph Fibonacci Pattern L1[Level 1: 1 Agent] --> L2[Level 2: 1 Agent] L2 --> L3[Level 3: 2 Agents] L3 --> L4[Level 4: 3 Agents] L4 --> L5[Level 5: 5 Agents] end Task[Initial Task] --> L1 L5 --> Results[Processed Results] ``` **Best Used When:** - You need natural scaling patterns - Tasks have increasing complexity - You want organic growth in processing capacity ### Pyramid Swarm ```python def pyramid_swarm(agents: AgentListType, tasks: List[str], return_full_history: bool = True) ``` **Information Flow:** ```mermaid flowchart TD subgraph Pyramid Structure A1((Leader Agent)) A2((Manager 1)) A3((Manager 2)) A4((Worker 1)) A5((Worker 2)) A6((Worker 3)) A7((Worker 4)) A1 --> A2 A1 --> A3 A2 --> A4 A2 --> A5 A3 --> A6 A3 --> A7 end Task[Complex Task] --> A1 A4 --> Result1[Output 1] A5 --> Result2[Output 2] A6 --> Result3[Output 3] A7 --> Result4[Output 4] ``` **Best Used When:** - You need hierarchical task processing - Tasks require multiple levels of oversight - You want organized task delegation ### Grid Swarm ```python def grid_swarm(agents: AgentListType, tasks: List[str]) ``` **Information Flow:** ```mermaid flowchart TD subgraph Grid Layout A1((1)) <--> A2((2)) <--> A3((3)) A4((4)) <--> A5((5)) <--> A6((6)) A7((7)) <--> A8((8)) <--> A9((9)) A1 <--> A4 <--> A7 A2 <--> A5 <--> A8 A3 <--> A6 <--> A9 end Tasks[Task Queue] --> A1 Tasks --> A5 Tasks --> A9 ``` **Best Used When:** - Tasks have spatial relationships - You need neighbor-based processing - You want structured parallel processing ## Communication Patterns ### One-to-One Communication ```python def one_to_one(sender: Agent, receiver: Agent, task: str, max_loops: int = 1) -> str ``` **Information Flow:** ```mermaid flowchart LR Task[Task] --> S((Sender)) S --> R((Receiver)) R --> Result[Result] ``` **Best Used When:** - Direct agent communication is needed - Tasks require back-and-forth interaction - You need controlled message exchange ### Broadcast Communication ```python async def broadcast(sender: Agent, agents: AgentListType, task: str) -> None ``` **Information Flow:** ```mermaid flowchart TD T[Task] --> S((Sender)) S --> A1((Agent 1)) S --> A2((Agent 2)) S --> A3((Agent 3)) S --> A4((Agent 4)) ``` **Best Used When:** - Information needs to reach all agents - Tasks require global coordination - You need system-wide updates ## Best Practices 1. **Choose the Right Pattern:** - Consider your task's natural structure - Think about scaling requirements - Consider fault tolerance needs 2. **Performance Considerations:** - More complex patterns have higher overhead - Consider communication costs - Match pattern to available resources 3. **Error Handling:** - All patterns include basic error checking - Consider adding additional error handling for production - Monitor agent performance and task completion 4. **Scaling:** - Different patterns scale differently - Consider future growth needs - Test with expected maximum load ## Common Use Cases 1. **Data Processing Pipelines** - Circular Swarm 2. **Distributed Computing** - Mesh Swarm - Grid Swarm 3. **Hierarchical Systems** - Pyramid Swarm - Star Swarm 4. **Dynamic Workloads** - Exponential Swarm - Fibonacci Swarm 5. **Conflict-Free Processing** - Prime Swarm - Harmonic Swarm ```python import asyncio from typing import List from swarms.structs.agent import Agent from swarms.structs.swarming_architectures import ( broadcast, circular_swarm, exponential_swarm, fibonacci_swarm, grid_swarm, mesh_swarm, one_to_three, prime_swarm, sigmoid_swarm, sinusoidal_swarm, staircase_swarm, star_swarm, ) def create_finance_agents() -> List[Agent]: """Create specialized finance agents""" return [ Agent( agent_name="MarketAnalyst", system_prompt="You are a market analysis expert. Analyze market trends and provide insights.", model_name="gpt-4o-mini" ), Agent( agent_name="RiskManager", system_prompt="You are a risk management specialist. Evaluate risks and provide mitigation strategies.", model_name="gpt-4o-mini" ), Agent( agent_name="PortfolioManager", system_prompt="You are a portfolio management expert. Optimize investment portfolios and asset allocation.", model_name="gpt-4o-mini" ), Agent( agent_name="ComplianceOfficer", system_prompt="You are a financial compliance expert. Ensure regulatory compliance and identify issues.", model_name="gpt-4o-mini" ) ] def create_healthcare_agents() -> List[Agent]: """Create specialized healthcare agents""" return [ Agent( agent_name="Diagnostician", system_prompt="You are a medical diagnostician. Analyze symptoms and suggest potential diagnoses.", model_name="gpt-4o-mini" ), Agent( agent_name="Treatment_Planner", system_prompt="You are a treatment planning specialist. Develop comprehensive treatment plans.", model_name="gpt-4o-mini" ), Agent( agent_name="MedicalResearcher", system_prompt="You are a medical researcher. Analyze latest research and provide evidence-based recommendations.", model_name="gpt-4o-mini" ), Agent( agent_name="PatientCareCoordinator", system_prompt="You are a patient care coordinator. Manage patient care workflow and coordination.", model_name="gpt-4o-mini" ) ] def print_separator(): print("\n" + "="*50 + "\n") def run_finance_circular_swarm(): """Investment analysis workflow using circular swarm""" print_separator() print("FINANCE - INVESTMENT ANALYSIS (Circular Swarm)") agents = create_finance_agents() tasks = [ "Analyze Tesla stock performance for Q4 2024", "Assess market risks and potential hedging strategies", "Recommend portfolio adjustments based on analysis" ] print("\nTasks:") for i, task in enumerate(tasks, 1): print(f"{i}. {task}") result = circular_swarm(agents, tasks) print("\nResults:") for log in result['history']: print(f"\n{log['agent_name']}:") print(f"Task: {log['task']}") print(f"Response: {log['response']}") def run_healthcare_grid_swarm(): """Patient diagnosis and treatment planning using grid swarm""" print_separator() print("HEALTHCARE - PATIENT DIAGNOSIS (Grid Swarm)") agents = create_healthcare_agents() tasks = [ "Review patient symptoms: fever, fatigue, joint pain", "Research latest treatment protocols", "Develop preliminary treatment plan", "Coordinate with specialists" ] print("\nTasks:") for i, task in enumerate(tasks, 1): print(f"{i}. {task}") result = grid_swarm(agents, tasks) print("\nGrid swarm processing completed") print(result) def run_healthcare_star_swarm(): """Complex medical case management using star swarm""" print_separator() print("HEALTHCARE - COMPLEX CASE MANAGEMENT (Star Swarm)") agents = create_healthcare_agents() tasks = [ "Complex case: Patient with multiple chronic conditions", "Develop integrated care plan" ] print("\nTasks:") for i, task in enumerate(tasks, 1): print(f"{i}. {task}") result = star_swarm(agents, tasks) print("\nResults:") for log in result['history']: print(f"\n{log['agent_name']}:") print(f"Task: {log['task']}") print(f"Response: {log['response']}") def run_finance_mesh_swarm(): """Market risk assessment using mesh swarm""" print_separator() print("FINANCE - MARKET RISK ASSESSMENT (Mesh Swarm)") agents = create_finance_agents() tasks = [ "Analyze global market conditions", "Assess currency exchange risks", "Evaluate sector-specific risks", "Review portfolio exposure" ] print("\nTasks:") for i, task in enumerate(tasks, 1): print(f"{i}. {task}") result = mesh_swarm(agents, tasks) print("\nResults:") for log in result['history']: print(f"\n{log['agent_name']}:") print(f"Task: {log['task']}") print(f"Response: {log['response']}") def run_mathematical_finance_swarms(): """Complex financial analysis using mathematical swarms""" print_separator() print("FINANCE - MARKET PATTERN ANALYSIS") agents = create_finance_agents() tasks = [ "Analyze historical market patterns", "Predict market trends using technical analysis", "Identify potential arbitrage opportunities" ] print("\nTasks:") for i, task in enumerate(tasks, 1): print(f"{i}. {task}") print("\nFibonacci Swarm Results:") result = fibonacci_swarm(agents, tasks.copy()) print(result) print("\nPrime Swarm Results:") result = prime_swarm(agents, tasks.copy()) print(result) print("\nExponential Swarm Results:") result = exponential_swarm(agents, tasks.copy()) print(result) def run_healthcare_pattern_swarms(): """Patient monitoring using pattern swarms""" print_separator() print("HEALTHCARE - PATIENT MONITORING PATTERNS") agents = create_healthcare_agents() task = "Monitor and analyze patient vital signs: BP, heart rate, temperature, O2 saturation" print(f"\nTask: {task}") print("\nStaircase Pattern Analysis:") result = staircase_swarm(agents, task) print(result) print("\nSigmoid Pattern Analysis:") result = sigmoid_swarm(agents, task) print(result) print("\nSinusoidal Pattern Analysis:") result = sinusoidal_swarm(agents, task) print(result) async def run_communication_examples(): """Communication patterns for emergency scenarios""" print_separator() print("EMERGENCY COMMUNICATION PATTERNS") # Finance market alert finance_sender = create_finance_agents()[0] finance_receivers = create_finance_agents()[1:] market_alert = "URGENT: Major market volatility detected - immediate risk assessment required" print("\nFinance Market Alert:") print(f"Alert: {market_alert}") result = await broadcast(finance_sender, finance_receivers, market_alert) print("\nBroadcast Results:") for log in result['history']: print(f"\n{log['agent_name']}:") print(f"Response: {log['response']}") # Healthcare emergency health_sender = create_healthcare_agents()[0] health_receivers = create_healthcare_agents()[1:4] emergency_case = "EMERGENCY: Trauma patient with multiple injuries - immediate consultation required" print("\nHealthcare Emergency:") print(f"Case: {emergency_case}") result = await one_to_three(health_sender, health_receivers, emergency_case) print("\nConsultation Results:") for log in result['history']: print(f"\n{log['agent_name']}:") print(f"Response: {log['response']}") async def run_all_examples(): """Execute all swarm examples""" print("\n=== SWARM ARCHITECTURE EXAMPLES ===\n") # Finance examples run_finance_circular_swarm() run_finance_mesh_swarm() run_mathematical_finance_swarms() # Healthcare examples run_healthcare_grid_swarm() run_healthcare_star_swarm() run_healthcare_pattern_swarms() # Communication examples await run_communication_examples() print("\n=== ALL EXAMPLES COMPLETED ===") if __name__ == "__main__": asyncio.run(run_all_examples()) ```