import os from swarm_models import OpenAIChat from swarms import Agent, MixtureOfAgents # Example usage: api_key = os.getenv("OPENAI_API_KEY") # Create individual agents with the OpenAIChat model model1 = OpenAIChat( openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 ) model2 = OpenAIChat( openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 ) model3 = OpenAIChat( openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 ) agent1 = Agent( agent_name="Agent1", llm=model1, max_loops=1, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=True, saved_state_path="agent1_state.json", user_name="swarms_corp", retry_attempts=1, context_length=200000, return_step_meta=False, ) agent2 = Agent( agent_name="Agent2", llm=model2, max_loops=1, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=True, saved_state_path="agent2_state.json", user_name="swarms_corp", retry_attempts=1, context_length=200000, return_step_meta=False, ) agent3 = Agent( agent_name="Agent3", llm=model3, max_loops=1, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=True, saved_state_path="agent3_state.json", user_name="swarms_corp", retry_attempts=1, context_length=200000, return_step_meta=False, ) aggregator_agent = Agent( agent_name="AggregatorAgent", llm=model1, max_loops=1, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=True, saved_state_path="aggregator_agent_state.json", user_name="swarms_corp", retry_attempts=1, context_length=200000, return_step_meta=False, ) # Create the Mixture of Agents class moa = MixtureOfAgents( reference_agents=[agent1, agent2, agent3], aggregator_agent=aggregator_agent, aggregator_system_prompt="""You have been provided with a set of responses from various agents. Your task is to synthesize these responses into a single, high-quality response.""", layers=3, ) out = moa.run( "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?" ) print(out)