import os import asyncio from swarms import Agent, OpenAIChat from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) # Set the OpenAI environment to use vLLM api_key = os.getenv("OPENAI_API_KEY") or "EMPTY" # for vllm api_base = os.getenv("OPENAI_API_BASE") or "http://localhost:8000/v1" # for vllm # Create an instance of the OpenAIChat class model = OpenAIChat( base_url=api_base, api_key=api_key, model="NousResearch/Meta-Llama-3-8B-Instruct", temperature=0.5, streaming=True, verbose=True ) # Initialize the agent agent = Agent( agent_name="Financial-Analysis-Agent", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, llm=model, max_loops=2, autosave=True, # dynamic_temperature_enabled=True, dashboard=False, verbose=True, streaming_on=True, # interactive=True, # Set to False to disable interactive mode dynamic_temperature_enabled=False, saved_state_path="finance_agent.json", # tools=[#Add your functions here# ], # stopping_token="Stop!", # interactive=True, # docs_folder="docs", # Enter your folder name # pdf_path="docs/finance_agent.pdf", # sop="Calculate the profit for a company.", # sop_list=["Calculate the profit for a company."], user_name="RAH@EntangleIT.com", # # docs= # # docs_folder="docs", retry_attempts=3, # context_length=1000, # tool_schema = dict context_length=200000, # tool_schema= # tools # agent_ops_on=True, ) async def startup_event(): agent.stream_reponse( "What are the components of a startups stock incentive equity plan" ) if __name__ == "__main__": asyncio.run(startup_event())