# Import the OpenAIChat model and the Agent struct import os from swarms import ( Agent, OpenAIChat, SwarmNetwork, Anthropic, TogetherLLM, ) from swarms.memory import ChromaDB from dotenv import load_dotenv # load the environment variables load_dotenv() # Initialize the ChromaDB memory = ChromaDB() # Initialize the language model llm = OpenAIChat( temperature=0.5, ) # Initialize the Anthropic anthropic = Anthropic(max_tokens=3000) # TogeterLM together_llm = TogetherLLM( together_api_key=os.getenv("TOGETHER_API_KEY"), max_tokens=3000 ) ## Initialize the workflow agent = Agent( llm=anthropic, max_loops=1, agent_name="Social Media Manager", long_term_memory=memory, ) agent2 = Agent( llm=llm, max_loops=1, agent_name=" Product Manager", long_term_memory=memory, ) agent3 = Agent( llm=together_llm, max_loops=1, agent_name="SEO Manager", long_term_memory=memory, ) # Load the swarmnet with the agents swarmnet = SwarmNetwork( agents=[agent, agent2, agent3], logging_enabled=True ) # List the agents in the swarm network out = swarmnet.list_agents() print(out) # Run the workflow on a task out = swarmnet.run_single_agent( agent2.id, "Generate a 10,000 word blog on health and wellness." ) print(out) # # Run all the agents in the swarm network on a task # out = swarmnet.run_many_agents( # f"Summarize the blog and create a social media post: {out}" # ) # print(out)