import asyncio import json import secrets import time from concurrent.futures import ThreadPoolExecutor, TimeoutError from contextlib import contextmanager from datetime import datetime from typing import Any, Dict, List, Literal, Optional import pulsar from cryptography.fernet import Fernet from loguru import logger from prometheus_client import Counter, Histogram, start_http_server from pydantic import BaseModel, Field, validator from tenacity import retry, stop_after_attempt, wait_exponential from swarms.prompts.finance_agent_sys_prompt import FINANCIAL_AGENT_SYS_PROMPT from swarms.structs.agent import Agent # Enhanced metrics TASK_COUNTER = Counter('swarm_tasks_total', 'Total number of tasks processed') TASK_LATENCY = Histogram('swarm_task_duration_seconds', 'Task processing duration') TASK_FAILURES = Counter('swarm_task_failures_total', 'Total number of task failures') AGENT_ERRORS = Counter('swarm_agent_errors_total', 'Total number of agent errors') # Define types using Literal TaskStatus = Literal["pending", "processing", "completed", "failed"] TaskPriority = Literal["low", "medium", "high", "critical"] class SecurityConfig(BaseModel): """Security configuration for the swarm""" encryption_key: str = Field(..., description="Encryption key for sensitive data") tls_cert_path: Optional[str] = Field(None, description="Path to TLS certificate") tls_key_path: Optional[str] = Field(None, description="Path to TLS private key") auth_token: Optional[str] = Field(None, description="Authentication token") max_message_size: int = Field(default=1048576, description="Maximum message size in bytes") rate_limit: int = Field(default=100, description="Maximum tasks per minute") @validator('encryption_key') def validate_encryption_key(cls, v): if len(v) < 32: raise ValueError("Encryption key must be at least 32 bytes long") return v class Task(BaseModel): """Enhanced task model with additional metadata and validation""" task_id: str = Field(..., description="Unique identifier for the task") description: str = Field(..., description="Task description or instructions") output_type: Literal["string", "json", "file"] = Field("string") status: TaskStatus = Field(default="pending") priority: TaskPriority = Field(default="medium") created_at: datetime = Field(default_factory=datetime.utcnow) started_at: Optional[datetime] = None completed_at: Optional[datetime] = None retry_count: int = Field(default=0) metadata: Dict[str, Any] = Field(default_factory=dict) @validator('task_id') def validate_task_id(cls, v): if not v.strip(): raise ValueError("task_id cannot be empty") return v class Config: json_encoders = { datetime: lambda v: v.isoformat() } class TaskResult(BaseModel): """Model for task execution results""" task_id: str status: TaskStatus result: Any error_message: Optional[str] = None execution_time: float agent_id: str @contextmanager def task_timing(): """Context manager for timing task execution""" start_time = time.time() try: yield finally: duration = time.time() - start_time TASK_LATENCY.observe(duration) class SecurePulsarSwarm: """ Enhanced secure, scalable swarm system with improved reliability and security features. """ def __init__( self, name: str, description: str, agents: List[Any], pulsar_url: str, subscription_name: str, topic_name: str, security_config: SecurityConfig, max_workers: int = 5, retry_attempts: int = 3, task_timeout: int = 300, metrics_port: int = 8000, ): """Initialize the enhanced Pulsar Swarm""" self.name = name self.description = description self.agents = agents self.pulsar_url = pulsar_url self.subscription_name = subscription_name self.topic_name = topic_name self.security_config = security_config self.max_workers = max_workers self.retry_attempts = retry_attempts self.task_timeout = task_timeout # Initialize encryption self.cipher_suite = Fernet(security_config.encryption_key.encode()) # Setup metrics server start_http_server(metrics_port) # Initialize Pulsar client with security settings client_config = { "authentication": None if not security_config.auth_token else pulsar.AuthenticationToken(security_config.auth_token), "operation_timeout_seconds": 30, "connection_timeout_seconds": 30, "use_tls": bool(security_config.tls_cert_path), "tls_trust_certs_file_path": security_config.tls_cert_path, "tls_allow_insecure_connection": False, } self.client = pulsar.Client(self.pulsar_url, **client_config) self.producer = self._create_producer() self.consumer = self._create_consumer() self.executor = ThreadPoolExecutor(max_workers=max_workers) # Initialize rate limiting self.last_execution_time = time.time() self.execution_count = 0 logger.info(f"Secure Pulsar Swarm '{self.name}' initialized with enhanced security features") def _create_producer(self): """Create a secure producer with retry logic""" return self.client.create_producer( self.topic_name, max_pending_messages=1000, compression_type=pulsar.CompressionType.LZ4, block_if_queue_full=True, batching_enabled=True, batching_max_publish_delay_ms=10 ) def _create_consumer(self): """Create a secure consumer with retry logic""" return self.client.subscribe( self.topic_name, subscription_name=self.subscription_name, consumer_type=pulsar.ConsumerType.Shared, message_listener=None, receiver_queue_size=1000, max_total_receiver_queue_size_across_partitions=50000 ) def _encrypt_message(self, data: str) -> bytes: """Encrypt message data""" return self.cipher_suite.encrypt(data.encode()) def _decrypt_message(self, data: bytes) -> str: """Decrypt message data""" return self.cipher_suite.decrypt(data).decode() @retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10)) def publish_task(self, task: Task) -> None: """Publish a task with enhanced security and reliability""" try: # Validate message size task_data = task.json() if len(task_data) > self.security_config.max_message_size: raise ValueError("Task data exceeds maximum message size") # Rate limiting current_time = time.time() if current_time - self.last_execution_time >= 60: self.execution_count = 0 self.last_execution_time = current_time if self.execution_count >= self.security_config.rate_limit: raise ValueError("Rate limit exceeded") # Encrypt and publish encrypted_data = self._encrypt_message(task_data) message_id = self.producer.send(encrypted_data) self.execution_count += 1 logger.info(f"Task {task.task_id} published successfully with message ID {message_id}") except Exception as e: TASK_FAILURES.inc() logger.error(f"Error publishing task {task.task_id}: {str(e)}") raise async def _process_task(self, task: Task) -> TaskResult: """Process a task with comprehensive error handling and monitoring""" task.status = "processing" task.started_at = datetime.utcnow() with task_timing(): try: # Select agent using round-robin agent = self.agents.pop(0) self.agents.append(agent) # Execute task with timeout future = self.executor.submit(agent.run, task.description) result = future.result(timeout=self.task_timeout) # Handle different output types if task.output_type == "json": result = json.loads(result) elif task.output_type == "file": file_path = f"output_{task.task_id}_{int(time.time())}.txt" with open(file_path, "w") as f: f.write(result) result = {"file_path": file_path} task.status = "completed" task.completed_at = datetime.utcnow() TASK_COUNTER.inc() return TaskResult( task_id=task.task_id, status="completed", result=result, execution_time=time.time() - task.started_at.timestamp(), agent_id=agent.agent_name ) except TimeoutError: TASK_FAILURES.inc() error_msg = f"Task {task.task_id} timed out after {self.task_timeout} seconds" logger.error(error_msg) task.status = "failed" return TaskResult( task_id=task.task_id, status="failed", result=None, error_message=error_msg, execution_time=time.time() - task.started_at.timestamp(), agent_id=agent.agent_name ) except Exception as e: TASK_FAILURES.inc() AGENT_ERRORS.inc() error_msg = f"Error processing task {task.task_id}: {str(e)}" logger.error(error_msg) task.status = "failed" return TaskResult( task_id=task.task_id, status="failed", result=None, error_message=error_msg, execution_time=time.time() - task.started_at.timestamp(), agent_id=agent.agent_name ) async def consume_tasks(self): """Enhanced task consumption with circuit breaker and backoff""" consecutive_failures = 0 backoff_time = 1 while True: try: # Circuit breaker pattern if consecutive_failures >= 5: logger.warning(f"Circuit breaker triggered. Waiting {backoff_time} seconds") await asyncio.sleep(backoff_time) backoff_time = min(backoff_time * 2, 60) continue # Receive message with timeout message = await self.consumer.receive_async() try: # Decrypt and process message decrypted_data = self._decrypt_message(message.data()) task_data = json.loads(decrypted_data) task = Task(**task_data) # Process task result = await self._process_task(task) # Handle result if result.status == "completed": await self.consumer.acknowledge_async(message) consecutive_failures = 0 backoff_time = 1 else: if task.retry_count < self.retry_attempts: task.retry_count += 1 await self.consumer.negative_acknowledge(message) else: await self.consumer.acknowledge_async(message) logger.error(f"Task {task.task_id} failed after {self.retry_attempts} attempts") except Exception as e: logger.error(f"Error processing message: {str(e)}") await self.consumer.negative_acknowledge(message) consecutive_failures += 1 except Exception as e: logger.error(f"Error in consume_tasks: {str(e)}") consecutive_failures += 1 await asyncio.sleep(1) def __enter__(self): """Context manager entry""" return self def __exit__(self, exc_type, exc_val, exc_tb): """Context manager exit with proper cleanup""" try: self.producer.flush() self.producer.close() self.consumer.close() self.client.close() self.executor.shutdown(wait=True) except Exception as e: logger.error(f"Error during cleanup: {str(e)}") if __name__ == "__main__": # Example usage with security configuration security_config = SecurityConfig( encryption_key=secrets.token_urlsafe(32), tls_cert_path="/path/to/cert.pem", tls_key_path="/path/to/key.pem", auth_token="your-auth-token", max_message_size=1048576, rate_limit=100 ) # Agent factory function def create_financial_agent() -> Agent: """Factory function to create a financial analysis agent.""" return Agent( agent_name="Financial-Analysis-Agent", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, model_name="gpt-4o-mini", max_loops=1, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=True, saved_state_path="finance_agent.json", user_name="swarms_corp", retry_attempts=1, context_length=200000, return_step_meta=False, output_type="string", streaming_on=False, ) # Initialize agents (implementation not shown) agents = [create_financial_agent() for _ in range(3)] # Initialize the secure swarm with SecurePulsarSwarm( name="Secure Financial Swarm", description="Production-grade financial analysis swarm", agents=agents, pulsar_url="pulsar+ssl://localhost:6651", subscription_name="secure_financial_subscription", topic_name="secure_financial_tasks", security_config=security_config, max_workers=5, retry_attempts=3, task_timeout=300, metrics_port=8000 ) as swarm: # Example task task = Task( task_id=secrets.token_urlsafe(16), description="Analyze Q4 financial reports", output_type="json", priority="high", metadata={"department": "finance", "requester": "john.doe@company.com"} ) # Run the swarm swarm.publish_task(task) asyncio.run(swarm.consume_tasks())