import os from dotenv import load_dotenv from swarm_models import Anthropic, OpenAIChat from swarms.prompts.accountant_swarm_prompts import ( DECISION_MAKING_PROMPT, DOC_ANALYZER_AGENT_PROMPT, SUMMARY_GENERATOR_AGENT_PROMPT, ) from swarms.structs import Agent from swarms.utils.pdf_to_text import pdf_to_text # Environment variables load_dotenv() anthropic_api_key = os.getenv("ANTHROPIC_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY") # Base llms llm1 = OpenAIChat( openai_api_key=openai_api_key, max_tokens=5000, ) llm2 = Anthropic( anthropic_api_key=anthropic_api_key, max_tokens=5000, ) # Agents doc_analyzer_agent = Agent( llm=llm2, sop=DOC_ANALYZER_AGENT_PROMPT, max_loops=1, autosave=True, saved_state_path="doc_analyzer_agent.json", ) summary_generator_agent = Agent( llm=llm2, sop=SUMMARY_GENERATOR_AGENT_PROMPT, max_loops=1, autosave=True, saved_state_path="summary_generator_agent.json", ) decision_making_support_agent = Agent( llm=llm2, sop=DECISION_MAKING_PROMPT, max_loops=1, saved_state_path="decision_making_support_agent.json", ) pdf_path = "bankstatement.pdf" fraud_detection_instructions = "Detect fraud in the document" summary_agent_instructions = ( "Generate an actionable summary of the document with action steps" " to take" ) decision_making_support_agent_instructions = ( "Provide decision making support to the business owner:" ) # Transform the pdf to text pdf_text = pdf_to_text(pdf_path) print(pdf_text) # Detect fraud in the document fraud_detection_agent_output = doc_analyzer_agent.run( f"{fraud_detection_instructions}: {pdf_text}" ) # Generate an actionable summary of the document summary_agent_output = summary_generator_agent.run( f"{summary_agent_instructions}: {fraud_detection_agent_output}" ) # Provide decision making support to the accountant decision_making_support_agent_output = ( decision_making_support_agent.run( f"{decision_making_support_agent_instructions}:" f" {summary_agent_output}" ) )