# LangchainChromaVectorMemory import pytest from swarms.memory import LangchainChromaVectorMemory from unittest.mock import MagicMock, patch # Fixtures for setting up the memory and mocks @pytest.fixture() def vector_memory(tmp_path): loc = tmp_path / "vector_memory" return LangchainChromaVectorMemory(loc=loc) @pytest.fixture() def embeddings_mock(): with patch("swarms.memory.OpenAIEmbeddings") as mock: yield mock @pytest.fixture() def chroma_mock(): with patch("swarms.memory.Chroma") as mock: yield mock @pytest.fixture() def qa_mock(): with patch("swarms.memory.RetrievalQA") as mock: yield mock # Example test cases def test_initialization_default_settings(vector_memory): assert vector_memory.chunk_size == 1000 assert ( vector_memory.chunk_overlap == 100 ) # assuming default overlap of 0.1 assert vector_memory.loc.exists() def test_add_entry(vector_memory, embeddings_mock): with patch.object( vector_memory.db, "add_texts" ) as add_texts_mock: vector_memory.add("Example text") add_texts_mock.assert_called() def test_search_memory_returns_list(vector_memory): result = vector_memory.search_memory("example query", k=5) assert isinstance(result, list) def test_ask_question_returns_string(vector_memory, qa_mock): result = vector_memory.query("What is the color of the sky?") assert isinstance(result, str) @pytest.mark.parametrize( "query,k,type,expected", [ ("example query", 5, "mmr", [MagicMock()]), ( "example query", 0, "mmr", None, ), # Expected none when k is 0 or negative ( "example query", 3, "cos", [MagicMock()], ), # Mocked object as a placeholder ], ) def test_search_memory_different_params( vector_memory, query, k, type, expected ): with patch.object( vector_memory.db, "max_marginal_relevance_search", return_value=expected, ): with patch.object( vector_memory.db, "similarity_search_with_score", return_value=expected, ): result = vector_memory.search_memory( query, k=k, type=type ) assert len(result) == (k if k > 0 else 0)