from swarms import Agent from swarms.tools.mcp_integration import MCPServerSseParams from swarms.prompts.agent_prompts import FINANCE_AGENT_PROMPT, MATH_AGENT_PROMPT def main(): # Configure MCP server connections math_server = MCPServerSseParams( url="http://0.0.0.0:8000/mcp", headers={"Content-Type": "application/json"}, timeout=5.0, sse_read_timeout=30.0 ) stock_server = MCPServerSseParams( url="http://0.0.0.0:8001/mcp", headers={"Content-Type": "application/json"}, timeout=5.0, sse_read_timeout=30.0 ) # Initialize math agent math_agent = Agent( agent_name="Math Agent", agent_description="Specialized agent for mathematical computations", system_prompt=MATH_AGENT_PROMPT, max_loops=1, mcp_servers=[math_server], streaming_on=True ) # Initialize stock agent stock_agent = Agent( agent_name="Stock Agent", agent_description="Specialized agent for stock analysis", system_prompt=FINANCE_AGENT_PROMPT, max_loops=1, mcp_servers=[stock_server], streaming_on=True ) print("\nMulti-Agent System Initialized") print("\nAvailable operations:") print("Math Agent: add, multiply, divide") print("Stock Agent: get stock price, calculate moving average") while True: query = input("\nEnter your query (or 'exit' to quit): ") if query.lower() == 'exit': break # Process with both agents math_result = math_agent.run(query) stock_result = stock_agent.run(query) print("\nMath Agent Response:", math_result) print("Stock Agent Response:", stock_result) if __name__ == "__main__": main()