from swarms import Agent from swarm_models.base_llm import BaseLLM # Define a custom LLM class class ExampleLLM(BaseLLM): def __init__(self): pass def run(self, task: str, *args, **kwargs): # Your LLM logic here pass # Initialize the workflow agent = Agent( llm=ExampleLLM(), # Instantiate the ExampleLLM class max_loops="auto", # Set the maximum number of loops to "auto" autosave=True, # Enable autosave feature dashboard=False, # Disable the dashboard streaming_on=True, # Enable streaming verbose=True, # Enable verbose mode stopping_token="", # Set the stopping token to "" interactive=True, # Enable interactive mode ) # Run the workflow on a task agent( "Generate a transcript for a youtube video on what swarms are!" # Specify the task " Output a token when done." # Specify the stopping condition )