import json import os import platform import sys import traceback from dataclasses import dataclass from datetime import datetime from typing import Any, Dict, List, Optional, Tuple import psutil import requests from loguru import logger from swarm_models import OpenAIChat from swarms.structs.agent import Agent @dataclass class SwarmSystemInfo: """System information for Swarms issue reports.""" os_name: str os_version: str python_version: str cpu_usage: float memory_usage: float disk_usage: float swarms_version: str # Added Swarms version tracking cuda_available: bool # Added CUDA availability check gpu_info: Optional[str] # Added GPU information class SwarmsIssueReporter: """ Production-grade GitHub issue reporter specifically designed for the Swarms library. Automatically creates detailed issues for the https://github.com/kyegomez/swarms repository. Features: - Swarms-specific error categorization - Automatic version and dependency tracking - CUDA and GPU information collection - Integration with Swarms logging system - Detailed environment information """ REPO_OWNER = "kyegomez" REPO_NAME = "swarms" ISSUE_CATEGORIES = { "agent": ["agent", "automation"], "memory": ["memory", "storage"], "tool": ["tools", "integration"], "llm": ["llm", "model"], "performance": ["performance", "optimization"], "compatibility": ["compatibility", "environment"], } def __init__( self, github_token: str, rate_limit: int = 10, rate_period: int = 3600, log_file: str = "swarms_issues.log", enable_duplicate_check: bool = True, ): """ Initialize the Swarms Issue Reporter. Args: github_token (str): GitHub personal access token rate_limit (int): Maximum number of issues to create per rate_period rate_period (int): Time period for rate limiting in seconds log_file (str): Path to log file enable_duplicate_check (bool): Whether to check for duplicate issues """ self.github_token = github_token self.rate_limit = rate_limit self.rate_period = rate_period self.enable_duplicate_check = enable_duplicate_check self.github_token = os.getenv("GITHUB_API_KEY") # Initialize logging log_path = os.path.join(os.getcwd(), "logs", log_file) os.makedirs(os.path.dirname(log_path), exist_ok=True) logger.add( log_path, rotation="1 day", retention="1 month", compression="zip", ) # Issue tracking self.issues_created = [] self.last_issue_time = datetime.now() def _get_swarms_version(self) -> str: """Get the installed version of Swarms.""" try: import swarms return swarms.__version__ except: return "Unknown" def _get_gpu_info(self) -> Tuple[bool, Optional[str]]: """Get GPU information and CUDA availability.""" try: import torch cuda_available = torch.cuda.is_available() if cuda_available: gpu_info = torch.cuda.get_device_name(0) return cuda_available, gpu_info return False, None except ModuleNotFoundError as e: print(f"Error: {e}") return False, None except RuntimeError as e: print(f"Error: {e}") return False, None except Exception as e: print(f"Unexpected error: {e}") return False, None def _get_system_info(self) -> SwarmSystemInfo: """Collect system and Swarms-specific information.""" cuda_available, gpu_info = self._get_gpu_info() return SwarmSystemInfo( os_name=platform.system(), os_version=platform.version(), python_version=sys.version, cpu_usage=psutil.cpu_percent(), memory_usage=psutil.virtual_memory().percent, disk_usage=psutil.disk_usage("/").percent, swarms_version=self._get_swarms_version(), cuda_available=cuda_available, gpu_info=gpu_info, ) def _categorize_error(self, error: Exception, context: Dict) -> List[str]: """Categorize the error and return appropriate labels.""" error_str = str(error).lower() labels = ["bug", "automated"] # Check error message and context for category keywords for category, category_labels in self.ISSUE_CATEGORIES.items(): if any(keyword in error_str for keyword in category_labels): labels.extend(category_labels) break # Add severity label based on error type if issubclass(type(error), (SystemError, MemoryError)): labels.append("severity:critical") elif issubclass(type(error), (ValueError, TypeError)): labels.append("severity:medium") else: labels.append("severity:low") return list(set(labels)) # Remove duplicates def _format_swarms_issue_body( self, error: Exception, system_info: SwarmSystemInfo, context: Dict ) -> str: """Format the issue body with Swarms-specific information.""" return f""" ## Swarms Error Report - **Error Type**: {type(error).__name__} - **Error Message**: {str(error)} - **Swarms Version**: {system_info.swarms_version} ## Environment Information - **OS**: {system_info.os_name} {system_info.os_version} - **Python Version**: {system_info.python_version} - **CUDA Available**: {system_info.cuda_available} - **GPU**: {system_info.gpu_info or "N/A"} - **CPU Usage**: {system_info.cpu_usage}% - **Memory Usage**: {system_info.memory_usage}% - **Disk Usage**: {system_info.disk_usage}% ## Stack Trace {traceback.format_exc()} ## Context {json.dumps(context, indent=2)} ## Dependencies {self._get_dependencies_info()} ## Time of Occurrence {datetime.now().isoformat()} --- *This issue was automatically generated by SwarmsIssueReporter* """ def _get_dependencies_info(self) -> str: """Get information about installed dependencies.""" try: import pkg_resources deps = [] for dist in pkg_resources.working_set: deps.append(f"- {dist.key} {dist.version}") return "\n".join(deps) except ImportError as e: print(f"Error: {e}") return "Unable to fetch dependency information" except Exception as e: print(f"Unexpected error: {e}") return "Unable to fetch dependency information" def _check_rate_limit(self) -> bool: """Check if we're within rate limits.""" now = datetime.now() time_diff = (now - self.last_issue_time).total_seconds() if len(self.issues_created) >= self.rate_limit and time_diff < self.rate_period: logger.warning("Rate limit exceeded for issue creation") return False # Clean up old issues from tracking self.issues_created = [ time for time in self.issues_created if (now - time).total_seconds() < self.rate_period ] return True def report_swarms_issue( self, error: Exception, agent: Optional[Agent] = None, context: Dict[str, Any] = None, priority: str = "normal", ) -> Optional[int]: """ Report a Swarms-specific issue to GitHub. Args: error (Exception): The exception to report agent (Optional[Agent]): The Swarms agent instance that encountered the error context (Dict[str, Any]): Additional context about the error priority (str): Issue priority ("low", "normal", "high", "critical") Returns: Optional[int]: Issue number if created successfully """ try: if not self._check_rate_limit(): logger.warning("Skipping issue creation due to rate limit") return None # Collect system information system_info = self._get_system_info() # Prepare context with agent information if available full_context = context or {} if agent: full_context.update( { "agent_name": agent.agent_name, "agent_description": agent.agent_description, "max_loops": agent.max_loops, "context_length": agent.context_length, } ) # Create issue title title = f"[{type(error).__name__}] {str(error)[:100]}" if agent: title = f"[Agent: {agent.agent_name}] {title}" # Get appropriate labels labels = self._categorize_error(error, full_context) labels.append(f"priority:{priority}") # Create the issue url = f"https://api.github.com/repos/{self.REPO_OWNER}/{self.REPO_NAME}/issues" data = { "title": title, "body": self._format_swarms_issue_body(error, system_info, full_context), "labels": labels, } response = requests.post( url, headers={"Authorization": f"token {self.github_token}"}, json=data, ) response.raise_for_status() issue_number = response.json()["number"] logger.info(f"Successfully created Swarms issue #{issue_number}") return issue_number except Exception as e: logger.error(f"Error creating Swarms issue: {str(e)}") return None # Setup the reporter with your GitHub token reporter = SwarmsIssueReporter(github_token=os.getenv("GITHUB_API_KEY")) # Force an error to test the reporter try: # This will raise an error since the input isn't valid model = OpenAIChat(model_name="gpt-4o") agent = Agent(agent_name="Test-Agent", max_loops=1) result = agent.run(None) raise ValueError("test") except Exception as e: # Report the issue issue_number = reporter.report_swarms_issue( error=e, agent=agent, context={"task": "test_run"}, priority="high", ) print(f"Created issue number: {issue_number}")