import os from dotenv import load_dotenv import swarms.prompts.education as edu_prompts from swarms import Agent, SequentialWorkflow from swarms.models import OpenAIChat # Load environment variables load_dotenv() api_key = os.getenv("OPENAI_API_KEY") stability_api_key = os.getenv("STABILITY_API_KEY") # Initialize language model llm = OpenAIChat( openai_api_key=api_key, temperature=0.5, max_tokens=3000 ) # User preferences (can be dynamically set in a real application) user_preferences = { "subjects": "Cognitive Architectures", "learning_style": "Visual", "challenge_level": "Moderate", } # Formatted prompts from user preferences curriculum_prompt = edu_prompts.CURRICULUM_DESIGN_PROMPT.format( **user_preferences ) interactive_prompt = edu_prompts.INTERACTIVE_LEARNING_PROMPT.format( **user_preferences ) sample_prompt = edu_prompts.SAMPLE_TEST_PROMPT.format( **user_preferences ) image_prompt = edu_prompts.IMAGE_GENERATION_PROMPT.format( **user_preferences ) # Initialize agents for different educational tasks curriculum_agent = Agent(llm=llm, max_loops=1, sop=curriculum_prompt) interactive_learning_agent = Agent( llm=llm, max_loops=1, sop=interactive_prompt ) sample_lesson_agent = Agent(llm=llm, max_loops=1, sop=sample_prompt) # Create Sequential Workflow workflow = SequentialWorkflow(max_loops=1) # Add tasks to workflow with personalized prompts workflow.add(curriculum_agent, "Generate a curriculum") workflow.add( interactive_learning_agent, "Generate an interactive lesson" ) workflow.add(sample_lesson_agent, "Generate a practice test") # Execute the workflow for text-based tasks workflow.run() # Generate an image using Stable Diffusion # Output results for each task for task in workflow.tasks: print( f"Task Description: {task.description}\nResult:" f" {task.result}\n" ) # Output image result print("Image Generation Task: Generate an image for the interactive")