# Medical Coder Swarm API Documentation Base URL: `https://mcs-285321057562.us-central1.run.app` ## Table of Contents - [Authentication](#authentication) - [Rate Limits](#rate-limits) - [Endpoints](#endpoints) - [Health Check](#health-check) - [Run Medical Coder](#run-medical-coder) - [Run Batch Medical Coder](#run-batch-medical-coder) - [Get Patient Data](#get-patient-data) - [Get All Patients](#get-all-patients) - [Code Examples](#code-examples) - [Error Handling](#error-handling) ## Authentication Authentication details will be provided by the MCS team. Contact support for API credentials. ## Rate Limits | Endpoint | GET Rate Limit Status | |----------|----------------------| | `GET /rate-limits` | Returns current rate limit status for your IP address | ## Endpoints ### Health Check Check if the API is operational. | Method | Endpoint | Description | |--------|----------|-------------| | `GET` | `/health` | Returns 200 OK if service is running | ### Run Medical Coder Process a single patient case through the Medical Coder Swarm. | Method | Endpoint | Description | |--------|----------|-------------| | `POST` | `/v1/medical-coder/run` | Process a single patient case | **Request Body Parameters:** | Parameter | Type | Required | Description | |-----------|------|----------|-------------| | patient_id | string | Yes | Unique identifier for the patient | | case_description | string | Yes | Medical case details to be processed | **Response Schema:** | Field | Type | Description | |-------|------|-------------| | patient_id | string | Patient identifier | | case_data | string | Processed case data | ### Run Batch Medical Coder Process multiple patient cases in a single request. | Method | Endpoint | Description | |--------|----------|-------------| | `POST` | `/v1/medical-coder/run-batch` | Process multiple patient cases | **Request Body Parameters:** | Parameter | Type | Required | Description | |-----------|------|----------|-------------| | cases | array | Yes | Array of PatientCase objects | ### Get Patient Data Retrieve data for a specific patient. | Method | Endpoint | Description | |--------|----------|-------------| | `GET` | `/v1/medical-coder/patient/{patient_id}` | Get patient data by ID | **Path Parameters:** | Parameter | Type | Required | Description | |-----------|------|----------|-------------| | patient_id | string | Yes | Patient identifier | ### Get All Patients Retrieve data for all patients. | Method | Endpoint | Description | |--------|----------|-------------| | `GET` | `/v1/medical-coder/patients` | Get all patient data | ## Code Examples ### Python ```python import requests import json class MCSClient: def __init__(self, base_url="https://mcs.swarms.ai", api_key=None): self.base_url = base_url self.headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" if api_key else None } def run_medical_coder(self, patient_id, case_description): endpoint = f"{self.base_url}/v1/medical-coder/run" payload = { "patient_id": patient_id, "case_description": case_description } response = requests.post(endpoint, json=payload, headers=self.headers) return response.json() def run_batch(self, cases): endpoint = f"{self.base_url}/v1/medical-coder/run-batch" payload = {"cases": cases} response = requests.post(endpoint, json=payload, headers=self.headers) return response.json() # Usage example client = MCSClient(api_key="your_api_key") result = client.run_medical_coder("P123", "Patient presents with...") ``` ### Next.js (TypeScript) ```typescript // types.ts interface PatientCase { patient_id: string; case_description: string; } interface QueryResponse { patient_id: string; case_data: string; } // api.ts export class MCSApi { private baseUrl: string; private apiKey: string; constructor(apiKey: string, baseUrl = 'https://mcs.swarms.ai') { this.baseUrl = baseUrl; this.apiKey = apiKey; } private async fetchWithAuth(endpoint: string, options: RequestInit = {}) { const response = await fetch(`${this.baseUrl}${endpoint}`, { ...options, headers: { 'Content-Type': 'application/json', 'Authorization': `Bearer ${this.apiKey}`, ...options.headers, }, }); return response.json(); } async runMedicalCoder(patientCase: PatientCase): Promise { return this.fetchWithAuth('/v1/medical-coder/run', { method: 'POST', body: JSON.stringify(patientCase), }); } async getPatientData(patientId: string): Promise { return this.fetchWithAuth(`/v1/medical-coder/patient/${patientId}`); } } // Usage in component const mcsApi = new MCSApi(process.env.MCS_API_KEY); export async function ProcessPatientCase({ patientId, caseDescription }) { const result = await mcsApi.runMedicalCoder({ patient_id: patientId, case_description: caseDescription, }); return result; } ``` ### Go ```go package mcs import ( "bytes" "encoding/json" "fmt" "net/http" ) type MCSClient struct { BaseURL string APIKey string Client *http.Client } type PatientCase struct { PatientID string `json:"patient_id"` CaseDescription string `json:"case_description"` } type QueryResponse struct { PatientID string `json:"patient_id"` CaseData string `json:"case_data"` } func NewMCSClient(apiKey string) *MCSClient { return &MCSClient{ BaseURL: "https://mcs.swarms.ai", APIKey: apiKey, Client: &http.Client{}, } } func (c *MCSClient) RunMedicalCoder(patientCase PatientCase) (*QueryResponse, error) { payload, err := json.Marshal(patientCase) if err != nil { return nil, err } req, err := http.NewRequest("POST", fmt.Sprintf("%s/v1/medical-coder/run", c.BaseURL), bytes.NewBuffer(payload)) if err != nil { return nil, err } req.Header.Set("Content-Type", "application/json") req.Header.Set("Authorization", fmt.Sprintf("Bearer %s", c.APIKey)) resp, err := c.Client.Do(req) if err != nil { return nil, err } defer resp.Body.Close() var result QueryResponse if err := json.NewDecoder(resp.Body).Decode(&result); err != nil { return nil, err } return &result, nil } // Usage example func main() { client := NewMCSClient("your_api_key") result, err := client.RunMedicalCoder(PatientCase{ PatientID: "P123", CaseDescription: "Patient presents with...", }) if err != nil { panic(err) } fmt.Printf("Result: %+v\n", result) } ``` ## C Sharp ````cs using System; using System.Net.Http; using System.Text; using System.Text.Json; using System.Threading.Tasks; namespace MedicalCoderSwarm { public class PatientCase { public string PatientId { get; set; } public string CaseDescription { get; set; } } public class QueryResponse { public string PatientId { get; set; } public string CaseData { get; set; } } public class MCSClient : IDisposable { private readonly HttpClient _httpClient; private readonly string _baseUrl; public MCSClient(string apiKey, string baseUrl = "https://mcs-285321057562.us-central1.run.app") { _baseUrl = baseUrl; _httpClient = new HttpClient(); _httpClient.DefaultRequestHeaders.Add("Authorization", $"Bearer {apiKey}"); _httpClient.DefaultRequestHeaders.Add("Content-Type", "application/json"); } public async Task RunMedicalCoderAsync(string patientId, string caseDescription) { var payload = new PatientCase { PatientId = patientId, CaseDescription = caseDescription }; var content = new StringContent( JsonSerializer.Serialize(payload), Encoding.UTF8, "application/json" ); var response = await _httpClient.PostAsync( $"{_baseUrl}/v1/medical-coder/run", content ); response.EnsureSuccessStatusCode(); var responseContent = await response.Content.ReadAsStringAsync(); return JsonSerializer.Deserialize(responseContent); } public async Task GetPatientDataAsync(string patientId) { var response = await _httpClient.GetAsync( $"{_baseUrl}/v1/medical-coder/patient/{patientId}" ); response.EnsureSuccessStatusCode(); var responseContent = await response.Content.ReadAsStringAsync(); return JsonSerializer.Deserialize(responseContent); } public async Task HealthCheckAsync() { var response = await _httpClient.GetAsync($"{_baseUrl}/health"); return response.IsSuccessStatusCode; } public void Dispose() { _httpClient?.Dispose(); } } // Example usage public class Program { public static async Task Main() { try { using var client = new MCSClient("your_api_key"); // Check API health var isHealthy = await client.HealthCheckAsync(); Console.WriteLine($"API Health: {(isHealthy ? "Healthy" : "Unhealthy")}"); // Process a single case var result = await client.RunMedicalCoderAsync( "P123", "Patient presents with acute respiratory symptoms..." ); Console.WriteLine($"Processed case for patient {result.PatientId}"); Console.WriteLine($"Case data: {result.CaseData}"); // Get patient data var patientData = await client.GetPatientDataAsync("P123"); Console.WriteLine($"Retrieved data for patient {patientData.PatientId}"); } catch (HttpRequestException ex) { Console.WriteLine($"API request failed: {ex.Message}"); } catch (Exception ex) { Console.WriteLine($"An error occurred: {ex.Message}"); } } } } ``` ## Error Handling The API uses standard HTTP status codes and returns detailed error messages in JSON format. **Common Status Codes:** | Status Code | Description | |-------------|-------------| | 200 | Success | | 400 | Bad Request - Invalid input | | 401 | Unauthorized - Invalid or missing API key | | 422 | Validation Error - Request validation failed | | 429 | Too Many Requests - Rate limit exceeded | | 500 | Internal Server Error | **Error Response Format:** ```json { "detail": [ { "loc": ["body", "patient_id"], "msg": "field required", "type": "value_error.missing" } ] } ``` # MCS Python Client Documentation ## Installation ```bash pip install mcs ``` ## Quick Start ```python from mcs import MCSClient, PatientCase # Using context manager (recommended) with MCSClient() as client: # Process a single case response = client.run_medical_coder( patient_id="P123", case_description="Patient presents with acute respiratory symptoms..." ) print(f"Processed case: {response.case_data}") # Process multiple cases cases = [ PatientCase("P124", "Case 1 description..."), PatientCase("P125", "Case 2 description...") ] batch_response = client.run_batch(cases) ``` ## Client Configuration ### Constructor Arguments | Parameter | Type | Required | Default | Description | |-----------|------|----------|---------|-------------| | api_key | str | Yes | - | Authentication API key | | base_url | str | No | "https://mcs.swarms.ai" | API base URL | | timeout | int | No | 30 | Request timeout in seconds | | max_retries | int | No | 3 | Maximum retry attempts | | logger_name | str | No | "mcs" | Name for the logger instance | ### Example Configuration ```python client = MCSClient( base_url="https://custom-url.example.com", timeout=45, max_retries=5, logger_name="custom_logger" ) ``` ## Data Models ### PatientCase | Field | Type | Required | Description | |-------|------|----------|-------------| | patient_id | str | Yes | Unique identifier for the patient | | case_description | str | Yes | Medical case details | ### QueryResponse | Field | Type | Description | |-------|------|-------------| | patient_id | str | Patient identifier | | case_data | str | Processed case data | ## Methods ### run_medical_coder Process a single patient case. ```python def run_medical_coder( self, patient_id: str, case_description: str ) -> QueryResponse: ``` **Arguments:** | Parameter | Type | Required | Description | |-----------|------|----------|-------------| | patient_id | str | Yes | Patient identifier | | case_description | str | Yes | Case details | **Example:** ```python response = client.run_medical_coder( patient_id="P123", case_description="Patient presents with..." ) print(response.case_data) ``` ### run_batch Process multiple patient cases in batch. ```python def run_batch( self, cases: List[PatientCase] ) -> List[QueryResponse]: ``` **Arguments:** | Parameter | Type | Required | Description | |-----------|------|----------|-------------| | cases | List[PatientCase] | Yes | List of patient cases | **Example:** ```python cases = [ PatientCase("P124", "Case 1 description..."), PatientCase("P125", "Case 2 description...") ] responses = client.run_batch(cases) for response in responses: print(f"Patient {response.patient_id}: {response.case_data}") ``` ### get_patient_data Retrieve data for a specific patient. ```python def get_patient_data( self, patient_id: str ) -> QueryResponse: ``` **Example:** ```python patient_data = client.get_patient_data("P123") print(f"Patient data: {patient_data.case_data}") ``` ### get_all_patients Retrieve data for all patients. ```python def get_all_patients(self) -> List[QueryResponse]: ``` **Example:** ```python all_patients = client.get_all_patients() for patient in all_patients: print(f"Patient {patient.patient_id}: {patient.case_data}") ``` ### get_rate_limits Get current rate limit status. ```python def get_rate_limits(self) -> Dict[str, Any]: ``` **Example:** ```python rate_limits = client.get_rate_limits() print(f"Rate limit status: {rate_limits}") ``` ### health_check Check if the API is operational. ```python def health_check(self) -> bool: ``` **Example:** ```python is_healthy = client.health_check() print(f"API health: {'Healthy' if is_healthy else 'Unhealthy'}") ``` ## Error Handling ### Exception Hierarchy | Exception | Description | |-----------|-------------| | MCSClientError | Base exception for all client errors | | RateLimitError | Raised when API rate limit is exceeded | | AuthenticationError | Raised when API authentication fails | | ValidationError | Raised when request validation fails | ### Example Error Handling ```python from mcs import MCSClient, MCSClientError, RateLimitError with MCSClient() as client: try: response = client.run_medical_coder("P123", "Case description...") except RateLimitError: print("Rate limit exceeded. Please wait before retrying.") except MCSClientError as e: print(f"An error occurred: {str(e)}") ``` ## Advanced Usage ### Retry Configuration The client implements two levels of retry logic: 1. Connection-level retries (using `HTTPAdapter`): ```python client = MCSClient( , max_retries=5 # Adjusts connection-level retries ) ``` 2. Application-level retries (using `tenacity`): ```python from tenacity import retry, stop_after_attempt @retry(stop=stop_after_attempt(5)) def process_with_custom_retries(): with MCSClient() as client: return client.run_medical_coder("P123", "Case description...") ``` ### Batch Processing with Progress Tracking ```python from tqdm import tqdm with MCSClient() as client: cases = [ PatientCase(f"P{i}", f"Case description {i}") for i in range(100) ] # Process in smaller batches batch_size = 10 results = [] for i in tqdm(range(0, len(cases), batch_size)): batch = cases[i:i + batch_size] batch_results = client.run_batch(batch) results.extend(batch_results) ``` ## Best Practices 1. **Always use context managers:** ```python with MCSClient() as client: # Your code here pass ``` 2. **Handle rate limits appropriately:** ```python from time import sleep def process_with_rate_limit_handling(): with MCSClient() as client: try: return client.run_medical_coder("P123", "Case...") except RateLimitError: sleep(60) # Wait before retry return client.run_medical_coder("P123", "Case...") ``` 3. **Implement proper logging:** ```python from loguru import logger logger.add("mcs.log", rotation="500 MB") with MCSClient() as client: try: response = client.run_medical_coder("P123", "Case...") except Exception as e: logger.exception(f"Error processing case: {str(e)}") ``` 4. **Monitor API health:** ```python def ensure_healthy_api(): with MCSClient() as client: if not client.health_check(): raise SystemExit("API is not healthy") ```