from swarms import Agent, Anthropic, tool # Model llm = Anthropic( temperature=0.1, ) # Tools @tool def text_to_video(task: str): """ Converts a given text task into an animated video. Args: task (str): The text task to be converted into a video. Returns: str: The path to the exported GIF file. """ import torch from diffusers import ( AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, ) from diffusers.utils import export_to_gif from huggingface_hub import hf_hub_download from safetensors.torch import load_file device = "cuda" dtype = torch.float16 step = 4 # Options: [1,2,4,8] repo = "ByteDance/AnimateDiff-Lightning" ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" base = ( # Choose to your favorite base model. "emilianJR/epiCRealism" ) adapter = MotionAdapter().to(device, dtype) adapter.load_state_dict( load_file(hf_hub_download(repo, ckpt), device=device) ) pipe = AnimateDiffPipeline.from_pretrained( base, motion_adapter=adapter, torch_dtype=dtype ).to(device) pipe.scheduler = EulerDiscreteScheduler.from_config( pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear", ) output = pipe( prompt=task, guidance_scale=1.0, num_inference_steps=step ) out = export_to_gif(output.frames[0], "animation.gif") return out # Agent agent = Agent( agent_name="Devin", system_prompt=( "Autonomous agent that can interact with humans and other" " agents. Be Helpful and Kind. Use the tools provided to" " assist the user. Return all code in markdown format." ), llm=llm, max_loops="auto", autosave=True, dashboard=False, streaming_on=True, verbose=True, stopping_token="", interactive=True, tools=[text_to_video], ) # Run the agent out = agent("Create a vide of a girl coding AI wearing hijab") print(out)