from swarms import Agent from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) from swarms.structs.majority_voting import MajorityVoting from dotenv import load_dotenv def streaming_callback(agent_name: str, chunk: str, is_final: bool): # Chunk buffer static per call (reset each session) if not hasattr(streaming_callback, "_buffer"): streaming_callback._buffer = "" streaming_callback._buffer_size = 0 min_chunk_size = 512 # or any large chunk size you want if chunk: streaming_callback._buffer += chunk streaming_callback._buffer_size += len(chunk) if streaming_callback._buffer_size >= min_chunk_size or is_final: if streaming_callback._buffer: print(streaming_callback._buffer, end="", flush=True) streaming_callback._buffer = "" streaming_callback._buffer_size = 0 if is_final: print() load_dotenv() # Initialize the agent agent = Agent( agent_name="Financial-Analysis-Agent", agent_description="Personal finance advisor agent", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, max_loops=1, model_name="gpt-4.1", dynamic_temperature_enabled=True, user_name="swarms_corp", retry_attempts=3, context_length=8192, return_step_meta=False, output_type="str", # "json", "dict", "csv" OR "string" "yaml" and auto_generate_prompt=False, # Auto generate prompt for the agent based on name, description, and system prompt, task max_tokens=4000, # max output tokens saved_state_path="agent_00.json", interactive=False, streaming_on=True, #if concurrent agents want to be streamed ) swarm = MajorityVoting(agents=[agent, agent, agent]) swarm.run( "Create a table of super high growth opportunities for AI. I have $40k to invest in ETFs, index funds, and more. Please create a table in markdown.", streaming_callback=streaming_callback, )