from swarms.models import OpenAIChat, BioGPT, Anthropic from swarms.structs import Agent from swarms.structs.sequential_workflow import SequentialWorkflow # Example usage api_key = "" # Your actual API key here # Initialize the language agent llm = OpenAIChat( openai_api_key=api_key, temperature=0.5, max_tokens=3000, ) biochat = BioGPT() # Use Anthropic anthropic = Anthropic() # Initialize the agent with the language agent agent1 = Agent(llm=llm, max_loops=1, dashboard=False) # Create another agent for a different task agent2 = Agent(llm=llm, max_loops=1, dashboard=False) # Create another agent for a different task agent3 = Agent(llm=biochat, max_loops=1, dashboard=False) # agent4 = Agent(llm=anthropic, max_loops="auto") # Create the workflow workflow = SequentialWorkflow(max_loops=1) # Add tasks to the workflow workflow.add("Generate a 10,000 word blog on health and wellness.", agent1) # Suppose the next task takes the output of the first task as input workflow.add("Summarize the generated blog", agent2) workflow.add("Create a references sheet of materials for the curriculm", agent3) # Run the workflow workflow.run() # Output the results for task in workflow.tasks: print(f"Task: {task.description}, Result: {task.result}")