import asyncio import json import logging import os import random import threading import time import traceback import uuid from concurrent.futures import ThreadPoolExecutor from datetime import datetime from typing import ( Any, Callable, Dict, List, Optional, Tuple, Union, ) import toml import yaml from loguru import logger from pydantic import BaseModel from swarms.agents.ape_agent import auto_generate_prompt from swarms.artifacts.main_artifact import Artifact from swarms.prompts.agent_system_prompts import AGENT_SYSTEM_PROMPT_3 from swarms.prompts.multi_modal_autonomous_instruction_prompt import ( MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1, ) from swarms.prompts.tools import tool_sop_prompt from swarms.schemas.agent_mcp_errors import ( AgentMCPConnectionError, AgentMCPToolError, ) from swarms.schemas.agent_step_schemas import ManySteps, Step from swarms.schemas.base_schemas import ( AgentChatCompletionResponse, ChatCompletionResponseChoice, ChatMessageResponse, ) from swarms.schemas.llm_agent_schema import ModelConfigOrigin from swarms.structs.agent_rag_handler import ( RAGConfig, AgentRAGHandler, ) from swarms.structs.agent_roles import agent_roles from swarms.structs.conversation import Conversation from swarms.structs.safe_loading import ( SafeLoaderUtils, SafeStateManager, ) from swarms.telemetry.main import log_agent_data from swarms.tools.base_tool import BaseTool from swarms.tools.py_func_to_openai_func_str import ( convert_multiple_functions_to_openai_function_schema, ) from swarms.utils.data_to_text import data_to_text from swarms.utils.file_processing import create_file_in_folder from swarms.utils.formatter import formatter from swarms.utils.generate_keys import generate_api_key from swarms.utils.history_output_formatter import ( history_output_formatter, ) from swarms.utils.litellm_tokenizer import count_tokens from swarms.utils.litellm_wrapper import LiteLLM from swarms.utils.pdf_to_text import pdf_to_text from swarms.prompts.react_base_prompt import REACT_SYS_PROMPT from swarms.prompts.max_loop_prompt import generate_reasoning_prompt from swarms.prompts.safety_prompt import SAFETY_PROMPT from swarms.structs.ma_utils import set_random_models_for_agents from swarms.tools.mcp_client_call import ( execute_multiple_tools_on_multiple_mcp_servers_sync, execute_tool_call_simple, get_mcp_tools_sync, get_tools_for_multiple_mcp_servers, ) from swarms.schemas.mcp_schemas import ( MCPConnection, ) from swarms.utils.index import ( exists, format_data_structure, ) from swarms.schemas.conversation_schema import ConversationSchema from swarms.utils.output_types import OutputType def stop_when_repeats(response: str) -> bool: # Stop if the word stop appears in the response return "stop" in response.lower() # Parse done token def parse_done_token(response: str) -> bool: """Parse the response to see if the done token is present""" return "" in response # Agent ID generator def agent_id(): """Generate an agent id""" return uuid.uuid4().hex # Agent output types ToolUsageType = Union[BaseModel, Dict[str, Any]] # Agent Exceptions class AgentError(Exception): """Base class for all agent-related exceptions.""" pass class AgentInitializationError(AgentError): """Exception raised when the agent fails to initialize properly. Please check the configuration and parameters.""" pass class AgentRunError(AgentError): """Exception raised when the agent encounters an error during execution. Ensure that the task and environment are set up correctly.""" pass class AgentLLMError(AgentError): """Exception raised when there is an issue with the language model (LLM). Verify the model's availability and compatibility.""" pass class AgentToolError(AgentError): """Exception raised when the agent fails to utilize a tool. Check the tool's configuration and availability.""" pass class AgentMemoryError(AgentError): """Exception raised when the agent encounters a memory-related issue. Ensure that memory resources are properly allocated and accessible.""" pass class AgentLLMInitializationError(AgentError): """Exception raised when the LLM fails to initialize properly. Please check the configuration and parameters.""" pass class AgentToolExecutionError(AgentError): """Exception raised when the agent fails to execute a tool. Check the tool's configuration and availability.""" pass class Agent: """ Agent is the backbone to connect LLMs with tools and long term memory. Agent also provides the ability to ingest any type of docs like PDFs, Txts, Markdown, Json, and etc for the agent. Here is a list of features. Args: llm (Any): The language model to use template (str): The template to use max_loops (int): The maximum number of loops to run stopping_condition (Callable): The stopping condition to use loop_interval (int): The loop interval retry_attempts (int): The number of retry attempts retry_interval (int): The retry interval return_history (bool): Return the history stopping_token (str): The stopping token dynamic_loops (bool): Enable dynamic loops interactive (bool): Enable interactive mode dashboard (bool): Enable dashboard agent_name (str): The name of the agent agent_description (str): The description of the agent system_prompt (str): The system prompt tools (List[BaseTool]): The tools to use dynamic_temperature_enabled (bool): Enable dynamic temperature sop (str): The standard operating procedure sop_list (List[str]): The standard operating procedure list saved_state_path (str): The path to the saved state autosave (bool): Autosave the state context_length (int): The context length user_name (str): The user name self_healing_enabled (bool): Enable self healing code_interpreter (bool): Enable code interpreter multi_modal (bool): Enable multimodal pdf_path (str): The path to the pdf list_of_pdf (str): The list of pdf tokenizer (Any): The tokenizer long_term_memory (BaseVectorDatabase): The long term memory preset_stopping_token (bool): Enable preset stopping token traceback (Any): The traceback traceback_handlers (Any): The traceback handlers streaming_on (bool): Enable streaming docs (List[str]): The list of documents docs_folder (str): The folder containing the documents verbose (bool): Enable verbose mode parser (Callable): The parser to use best_of_n (int): The number of best responses to return callback (Callable): The callback function metadata (Dict[str, Any]): The metadata callbacks (List[Callable]): The list of callback functions search_algorithm (Callable): The search algorithm logs_to_filename (str): The filename for the logs evaluator (Callable): The evaluator function stopping_func (Callable): The stopping function custom_loop_condition (Callable): The custom loop condition sentiment_threshold (float): The sentiment threshold custom_exit_command (str): The custom exit command sentiment_analyzer (Callable): The sentiment analyzer limit_tokens_from_string (Callable): The function to limit tokens from a string custom_tools_prompt (Callable): The custom tools prompt tool_schema (ToolUsageType): The tool schema output_type (agent_output_type): The output type. Supported: 'str', 'string', 'list', 'json', 'dict', 'yaml', 'xml'. function_calling_type (str): The function calling type output_cleaner (Callable): The output cleaner function function_calling_format_type (str): The function calling format type list_base_models (List[BaseModel]): The list of base models metadata_output_type (str): The metadata output type state_save_file_type (str): The state save file type chain_of_thoughts (bool): Enable chain of thoughts algorithm_of_thoughts (bool): Enable algorithm of thoughts tree_of_thoughts (bool): Enable tree of thoughts tool_choice (str): The tool choice execute_tool (bool): Enable tool execution rules (str): The rules planning (str): The planning planning_prompt (str): The planning prompt device (str): The device custom_planning_prompt (str): The custom planning prompt memory_chunk_size (int): The memory chunk size agent_ops_on (bool): Enable agent operations log_directory (str): The log directory tool_system_prompt (str): The tool system prompt max_tokens (int): The maximum number of tokens frequency_penalty (float): The frequency penalty presence_penalty (float): The presence penalty temperature (float): The temperature workspace_dir (str): The workspace directory timeout (int): The timeout artifacts_on (bool): Enable artifacts artifacts_output_path (str): The artifacts output path artifacts_file_extension (str): The artifacts file extension (.pdf, .md, .txt, ) scheduled_run_date (datetime): The date and time to schedule the task Methods: run: Run the agent run_concurrent: Run the agent concurrently bulk_run: Run the agent in bulk save: Save the agent load: Load the agent validate_response: Validate the response print_history_and_memory: Print the history and memory step: Step through the agent graceful_shutdown: Gracefully shutdown the agent run_with_timeout: Run the agent with a timeout analyze_feedback: Analyze the feedback undo_last: Undo the last response add_response_filter: Add a response filter apply_response_filters: Apply the response filters filtered_run: Run the agent with filtered responses interactive_run: Run the agent in interactive mode streamed_generation: Stream the generation of the response save_state: Save the state truncate_history: Truncate the history add_task_to_memory: Add the task to the memory print_dashboard: Print the dashboard loop_count_print: Print the loop count streaming: Stream the content _history: Generate the history _dynamic_prompt_setup: Setup the dynamic prompt run_async: Run the agent asynchronously run_async_concurrent: Run the agent asynchronously and concurrently run_async_concurrent: Run the agent asynchronously and concurrently construct_dynamic_prompt: Construct the dynamic prompt handle_artifacts: Handle artifacts Examples: >>> from swarm_models import OpenAIChat >>> from swarms.structs import Agent >>> llm = OpenAIChat() >>> agent = Agent(llm=llm, max_loops=1) >>> response = agent.run("Generate a report on the financials.") >>> print(response) >>> # Generate a report on the financials. >>> # Real-time streaming example >>> agent = Agent(llm=llm, max_loops=1, streaming_on=True) >>> response = agent.run("Tell me a long story.") # Will stream in real-time >>> print(response) # Final complete response """ def __init__( self, id: Optional[str] = agent_id(), llm: Optional[Any] = None, template: Optional[str] = None, max_loops: Optional[int] = 1, stopping_condition: Optional[Callable[[str], bool]] = None, loop_interval: Optional[int] = 0, retry_attempts: Optional[int] = 3, retry_interval: Optional[int] = 1, return_history: Optional[bool] = False, stopping_token: Optional[str] = None, dynamic_loops: Optional[bool] = False, interactive: Optional[bool] = False, dashboard: Optional[bool] = False, agent_name: Optional[str] = "swarm-worker-01", agent_description: Optional[str] = None, system_prompt: Optional[str] = AGENT_SYSTEM_PROMPT_3, # TODO: Change to callable, then parse the callable to a string tools: List[Callable] = None, dynamic_temperature_enabled: Optional[bool] = False, sop: Optional[str] = None, sop_list: Optional[List[str]] = None, saved_state_path: Optional[str] = None, autosave: Optional[bool] = False, context_length: Optional[int] = 8192, user_name: Optional[str] = "Human", self_healing_enabled: Optional[bool] = False, code_interpreter: Optional[bool] = False, multi_modal: Optional[bool] = None, pdf_path: Optional[str] = None, list_of_pdf: Optional[str] = None, tokenizer: Optional[Any] = None, long_term_memory: Optional[Union[Callable, Any]] = None, preset_stopping_token: Optional[bool] = False, traceback: Optional[Any] = None, traceback_handlers: Optional[Any] = None, streaming_on: Optional[bool] = False, docs: List[str] = None, docs_folder: Optional[str] = None, verbose: Optional[bool] = False, parser: Optional[Callable] = None, best_of_n: Optional[int] = None, callback: Optional[Callable] = None, metadata: Optional[Dict[str, Any]] = None, callbacks: Optional[List[Callable]] = None, search_algorithm: Optional[Callable] = None, logs_to_filename: Optional[str] = None, evaluator: Optional[Callable] = None, # Custom LLM or agent stopping_func: Optional[Callable] = None, custom_loop_condition: Optional[Callable] = None, sentiment_threshold: Optional[ float ] = None, # Evaluate on output using an external model custom_exit_command: Optional[str] = "exit", sentiment_analyzer: Optional[Callable] = None, limit_tokens_from_string: Optional[Callable] = None, # [Tools] custom_tools_prompt: Optional[Callable] = None, tool_schema: ToolUsageType = None, output_type: OutputType = "str-all-except-first", function_calling_type: str = "json", output_cleaner: Optional[Callable] = None, function_calling_format_type: Optional[str] = "OpenAI", list_base_models: Optional[List[BaseModel]] = None, metadata_output_type: str = "json", state_save_file_type: str = "json", chain_of_thoughts: bool = False, algorithm_of_thoughts: bool = False, tree_of_thoughts: bool = False, tool_choice: str = "auto", rules: str = None, # type: ignore planning: Optional[str] = False, planning_prompt: Optional[str] = None, custom_planning_prompt: str = None, memory_chunk_size: int = 2000, agent_ops_on: bool = False, log_directory: str = None, tool_system_prompt: str = tool_sop_prompt(), max_tokens: int = 4096, frequency_penalty: float = 0.8, presence_penalty: float = 0.6, temperature: float = 0.5, workspace_dir: str = "agent_workspace", timeout: Optional[int] = None, # short_memory: Optional[str] = None, created_at: float = time.time(), return_step_meta: Optional[bool] = False, tags: Optional[List[str]] = None, use_cases: Optional[List[Dict[str, str]]] = None, step_pool: List[Step] = [], print_every_step: Optional[bool] = False, time_created: Optional[str] = time.strftime( "%Y-%m-%d %H:%M:%S", time.localtime() ), agent_output: ManySteps = None, data_memory: Optional[Callable] = None, load_yaml_path: str = None, auto_generate_prompt: bool = False, rag_every_loop: bool = False, plan_enabled: bool = False, artifacts_on: bool = False, artifacts_output_path: str = None, artifacts_file_extension: str = None, device: str = "cpu", all_cores: bool = True, device_id: int = 0, scheduled_run_date: Optional[datetime] = None, do_not_use_cluster_ops: bool = True, all_gpus: bool = False, model_name: str = None, llm_args: dict = None, load_state_path: str = None, role: agent_roles = "worker", print_on: bool = True, tools_list_dictionary: Optional[List[Dict[str, Any]]] = None, mcp_url: Optional[Union[str, MCPConnection]] = None, mcp_urls: List[str] = None, react_on: bool = False, safety_prompt_on: bool = False, random_models_on: bool = False, mcp_config: Optional[MCPConnection] = None, top_p: Optional[float] = 0.90, conversation_schema: Optional[ConversationSchema] = None, aditional_llm_config: Optional[ModelConfigOrigin] = None, llm_base_url: Optional[str] = None, llm_api_key: Optional[str] = None, rag_config: Optional[RAGConfig] = None, tool_call_summary: bool = True, output_raw_json_from_tool_call: bool = False, summarize_multiple_images: bool = False, tool_retry_attempts: int = 3, speed_mode: str = None, *args, **kwargs, ): # super().__init__(*args, **kwargs) self.id = id self.llm = llm self.template = template self.max_loops = max_loops self.stopping_condition = stopping_condition self.loop_interval = loop_interval self.retry_attempts = retry_attempts self.retry_interval = retry_interval self.task = None self.stopping_token = stopping_token self.interactive = interactive self.dashboard = dashboard self.saved_state_path = saved_state_path self.return_history = return_history self.dynamic_temperature_enabled = dynamic_temperature_enabled self.dynamic_loops = dynamic_loops self.user_name = user_name self.context_length = context_length self.sop = sop self.sop_list = sop_list self.tools = tools self.system_prompt = system_prompt self.agent_name = agent_name self.agent_description = agent_description # self.saved_state_path = f"{self.agent_name}_{generate_api_key(prefix='agent-')}_state.json" self.saved_state_path = ( f"{generate_api_key(prefix='agent-')}_state.json" ) self.autosave = autosave self.response_filters = [] self.self_healing_enabled = self_healing_enabled self.code_interpreter = code_interpreter self.multi_modal = multi_modal self.pdf_path = pdf_path self.list_of_pdf = list_of_pdf self.tokenizer = tokenizer self.long_term_memory = long_term_memory self.preset_stopping_token = preset_stopping_token self.traceback = traceback self.traceback_handlers = traceback_handlers self.streaming_on = streaming_on self.docs = docs self.docs_folder = docs_folder self.verbose = verbose self.parser = parser self.best_of_n = best_of_n self.callback = callback self.metadata = metadata self.callbacks = callbacks self.search_algorithm = search_algorithm self.logs_to_filename = logs_to_filename self.evaluator = evaluator self.stopping_func = stopping_func self.custom_loop_condition = custom_loop_condition self.sentiment_threshold = sentiment_threshold self.custom_exit_command = custom_exit_command self.sentiment_analyzer = sentiment_analyzer self.limit_tokens_from_string = limit_tokens_from_string self.tool_schema = tool_schema self.output_type = output_type self.function_calling_type = function_calling_type self.output_cleaner = output_cleaner self.function_calling_format_type = ( function_calling_format_type ) self.list_base_models = list_base_models self.metadata_output_type = metadata_output_type self.state_save_file_type = state_save_file_type self.chain_of_thoughts = chain_of_thoughts self.algorithm_of_thoughts = algorithm_of_thoughts self.tree_of_thoughts = tree_of_thoughts self.tool_choice = tool_choice self.planning = planning self.planning_prompt = planning_prompt self.custom_planning_prompt = custom_planning_prompt self.rules = rules self.custom_tools_prompt = custom_tools_prompt self.memory_chunk_size = memory_chunk_size self.agent_ops_on = agent_ops_on self.log_directory = log_directory self.tool_system_prompt = tool_system_prompt self.max_tokens = max_tokens self.frequency_penalty = frequency_penalty self.presence_penalty = presence_penalty self.temperature = temperature self.workspace_dir = workspace_dir self.timeout = timeout self.created_at = created_at self.return_step_meta = return_step_meta self.tags = tags self.use_cases = use_cases self.name = agent_name self.description = agent_description self.agent_output = agent_output self.step_pool = step_pool self.print_every_step = print_every_step self.time_created = time_created self.data_memory = data_memory self.load_yaml_path = load_yaml_path self.tokenizer = tokenizer self.auto_generate_prompt = auto_generate_prompt self.rag_every_loop = rag_every_loop self.plan_enabled = plan_enabled self.artifacts_on = artifacts_on self.artifacts_output_path = artifacts_output_path self.artifacts_file_extension = artifacts_file_extension self.device = device self.all_cores = all_cores self.device_id = device_id self.scheduled_run_date = scheduled_run_date self.do_not_use_cluster_ops = do_not_use_cluster_ops self.all_gpus = all_gpus self.model_name = model_name self.llm_args = llm_args self.load_state_path = load_state_path self.role = role self.print_on = print_on self.tools_list_dictionary = tools_list_dictionary self.mcp_url = mcp_url self.mcp_urls = mcp_urls self.react_on = react_on self.safety_prompt_on = safety_prompt_on self.random_models_on = random_models_on self.mcp_config = mcp_config self.top_p = top_p self.conversation_schema = conversation_schema self.aditional_llm_config = aditional_llm_config self.llm_base_url = llm_base_url self.llm_api_key = llm_api_key self.rag_config = rag_config self.tool_call_summary = tool_call_summary self.output_raw_json_from_tool_call = ( output_raw_json_from_tool_call ) self.summarize_multiple_images = summarize_multiple_images self.tool_retry_attempts = tool_retry_attempts self.speed_mode = speed_mode # Initialize the feedback self.feedback = [] # self.init_handling() self.setup_config() self.short_memory = self.short_memory_init() if exists(self.docs_folder): self.get_docs_from_doc_folders() if exists(self.tool_schema) or exists(self.list_base_models): self.handle_tool_schema_ops() if exists(self.sop) or exists(self.sop_list): self.handle_sop_ops() if self.max_loops >= 2: self.system_prompt += generate_reasoning_prompt( self.max_loops ) if self.react_on is True: self.system_prompt += REACT_SYS_PROMPT # Run sequential operations after all concurrent tasks are done # self.agent_output = self.agent_output_model() if self.autosave is True: log_agent_data(self.to_dict()) if exists(self.tools): self.tool_handling() if self.llm is None: self.llm = self.llm_handling() if self.random_models_on is True: self.model_name = set_random_models_for_agents() if self.long_term_memory is not None: self.rag_handler = self.rag_setup_handling() if self.dashboard is True: self.print_dashboard() self.reliability_check() def rag_setup_handling(self): return AgentRAGHandler( long_term_memory=self.long_term_memory, config=self.rag_config, agent_name=self.agent_name, verbose=self.verbose, ) def tool_handling(self): self.tool_struct = BaseTool( tools=self.tools, verbose=self.verbose, ) # Convert all the tools into a list of dictionaries self.tools_list_dictionary = ( convert_multiple_functions_to_openai_function_schema( self.tools ) ) self.short_memory.add( role=self.agent_name, content=self.tools_list_dictionary, ) def short_memory_init(self): prompt = "" # Add agent name, description, and instructions to the prompt if self.agent_name is not None: prompt += f"\n Name: {self.agent_name}" elif self.agent_description is not None: prompt += f"\n Description: {self.agent_description}" elif self.system_prompt is not None: prompt += f"\n Instructions: {self.system_prompt}" else: prompt = self.system_prompt if self.safety_prompt_on is True: prompt += SAFETY_PROMPT # Initialize the short term memory memory = Conversation( system_prompt=prompt, user=self.user_name, rules=self.rules, token_count=( self.conversation_schema.count_tokens if self.conversation_schema else False ), message_id_on=( self.conversation_schema.message_id_on if self.conversation_schema else False ), time_enabled=( self.conversation_schema.time_enabled if self.conversation_schema else False ), ) return memory def agent_output_model(self): # Many steps id = agent_id() return ManySteps( agent_id=id, agent_name=self.agent_name, # run_id=run_id, task="", max_loops=self.max_loops, steps=self.short_memory.to_dict(), full_history=self.short_memory.get_str(), total_tokens=count_tokens( text=self.short_memory.get_str() ), stopping_token=self.stopping_token, interactive=self.interactive, dynamic_temperature_enabled=self.dynamic_temperature_enabled, ) def llm_handling(self): # Use cached instance if available if self.llm is not None: return self.llm if self.model_name is None: self.model_name = "gpt-4o-mini" if exists(self.tools) and len(self.tools) >= 2: parallel_tool_calls = True elif exists(self.mcp_url) or exists(self.mcp_urls): parallel_tool_calls = True elif exists(self.mcp_config): parallel_tool_calls = True else: parallel_tool_calls = False try: # Simplify initialization logic common_args = { "model_name": self.model_name, "temperature": self.temperature, "max_tokens": self.max_tokens, "system_prompt": self.system_prompt, } if self.llm_args is not None: self.llm = LiteLLM(**{**common_args, **self.llm_args}) elif self.tools_list_dictionary is not None: self.llm = LiteLLM( **common_args, tools_list_dictionary=self.tools_list_dictionary, tool_choice="auto", parallel_tool_calls=parallel_tool_calls, ) elif exists(self.mcp_url) or exists(self.mcp_urls): self.llm = LiteLLM( **common_args, tools_list_dictionary=self.add_mcp_tools_to_memory(), tool_choice="auto", parallel_tool_calls=parallel_tool_calls, mcp_call=True, ) else: # common_args.update(self.aditional_llm_config.model_dump()) self.llm = LiteLLM( **common_args, stream=self.streaming_on, ) return self.llm except AgentLLMInitializationError as e: logger.error( f"Error in llm_handling: {e} Your current configuration is not supported. Please check the configuration and parameters." ) return None def add_mcp_tools_to_memory(self): """ Adds MCP tools to the agent's short-term memory. This function checks for either a single MCP URL or multiple MCP URLs and adds the available tools to the agent's memory. The tools are listed in JSON format. Raises: Exception: If there's an error accessing the MCP tools """ try: if exists(self.mcp_url): tools = get_mcp_tools_sync(server_path=self.mcp_url) elif exists(self.mcp_config): tools = get_mcp_tools_sync(connection=self.mcp_config) # logger.info(f"Tools: {tools}") elif exists(self.mcp_urls): tools = get_tools_for_multiple_mcp_servers( urls=self.mcp_urls, output_type="str", ) # print(f"Tools: {tools} for {self.mcp_urls}") else: raise AgentMCPConnectionError( "mcp_url must be either a string URL or MCPConnection object" ) if ( exists(self.mcp_url) or exists(self.mcp_urls) or exists(self.mcp_config) ): if self.print_on is True: self.pretty_print( f"✨ [SYSTEM] Successfully integrated {len(tools)} MCP tools into agent: {self.agent_name} | Status: ONLINE | Time: {time.strftime('%H:%M:%S')} ✨", loop_count=0, ) return tools except AgentMCPConnectionError as e: logger.error(f"Error in MCP connection: {e}") raise e def setup_config(self): # The max_loops will be set dynamically if the dynamic_loop if self.dynamic_loops is True: logger.info("Dynamic loops enabled") self.max_loops = "auto" # If multimodal = yes then set the sop to the multimodal sop if self.multi_modal is True: self.sop = MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1 # If the preset stopping token is enabled then set the stopping token to the preset stopping token if self.preset_stopping_token is not None: self.stopping_token = "" def check_model_supports_utilities( self, img: Optional[str] = None ) -> bool: """ Check if the current model supports vision capabilities. Args: img (str, optional): Image input to check vision support for. Defaults to None. Returns: bool: True if model supports vision and image is provided, False otherwise. """ from litellm.utils import ( supports_vision, supports_function_calling, supports_parallel_function_calling, ) # Only check vision support if an image is provided if img is not None: out = supports_vision(self.model_name) if out is False: logger.error( f"[Agent: {self.agent_name}] Model '{self.model_name}' does not support vision capabilities. " f"Image input was provided: {img[:100]}{'...' if len(img) > 100 else ''}. " f"Please use a vision-enabled model." ) if self.tools_list_dictionary is not None: out = supports_function_calling(self.model_name) if out is False: logger.error( f"[Agent: {self.agent_name}] Model '{self.model_name}' does not support function calling capabilities. " f"tools_list_dictionary is set: {self.tools_list_dictionary}. " f"Please use a function calling-enabled model." ) if self.tools is not None: if len(self.tools) > 2: out = supports_parallel_function_calling( self.model_name ) if out is False: logger.error( f"[Agent: {self.agent_name}] Model '{self.model_name}' does not support parallel function calling capabilities. " f"Please use a parallel function calling-enabled model." ) return None def check_if_no_prompt_then_autogenerate(self, task: str = None): """ Checks if auto_generate_prompt is enabled and generates a prompt by combining agent name, description and system prompt if available. Falls back to task if all other fields are missing. Args: task (str, optional): The task to use as a fallback if name, description and system prompt are missing. Defaults to None. """ if self.auto_generate_prompt is True: # Collect all available prompt components components = [] if self.agent_name: components.append(self.agent_name) if self.agent_description: components.append(self.agent_description) if self.system_prompt: components.append(self.system_prompt) # If no components available, fall back to task if not components and task: logger.warning( "No agent details found. Using task as fallback for prompt generation." ) self.system_prompt = auto_generate_prompt( task=task, model=self.llm ) else: # Combine all available components combined_prompt = " ".join(components) logger.info( f"Auto-generating prompt from: {', '.join(components)}" ) self.system_prompt = auto_generate_prompt( combined_prompt, self.llm ) self.short_memory.add( role="system", content=self.system_prompt ) logger.info("Auto-generated prompt successfully.") def set_system_prompt(self, system_prompt: str): """Set the system prompt""" self.system_prompt = system_prompt def provide_feedback(self, feedback: str) -> None: """Allow users to provide feedback on the responses.""" self.feedback.append(feedback) logging.info(f"Feedback received: {feedback}") def _check_stopping_condition(self, response: str) -> bool: """Check if the stopping condition is met.""" try: if self.stopping_condition: return self.stopping_condition(response) return False except Exception as error: logger.error( f"Error checking stopping condition: {error}" ) def dynamic_temperature(self): """ 1. Check the self.llm object for the temperature 2. If the temperature is not present, then use the default temperature 3. If the temperature is present, then dynamically change the temperature 4. for every loop you can randomly change the temperature on a scale from 0.0 to 1.0 """ try: if hasattr(self.llm, "temperature"): # Randomly change the temperature attribute of self.llm object self.llm.temperature = random.uniform(0.0, 1.0) else: # Use a default temperature self.llm.temperature = 0.5 except Exception as error: logger.error( f"Error dynamically changing temperature: {error}" ) def print_dashboard(self): tools_activated = True if self.tools is not None else False mcp_activated = True if self.mcp_url is not None else False formatter.print_panel( f""" 🤖 Agent {self.agent_name} Dashboard 🚀 ════════════════════════════════════════════════════════════ 🎯 Agent {self.agent_name} Status: ONLINE & OPERATIONAL ──────────────────────────────────────────────────────────── 📋 Agent Identity: • 🏷️ Name: {self.agent_name} • 📝 Description: {self.agent_description} ⚙️ Technical Specifications: • 🤖 Model: {self.model_name} • 🔄 Internal Loops: {self.max_loops} • 🎯 Max Tokens: {self.max_tokens} • 🌡️ Dynamic Temperature: {self.dynamic_temperature_enabled} 🔧 System Modules: • 🛠️ Tools Activated: {tools_activated} • 🔗 MCP Activated: {mcp_activated} ════════════════════════════════════════════════════════════ 🚀 Ready for Tasks 🚀 """, title=f"Agent {self.agent_name} Dashboard", ) # Main function def _run( self, task: Optional[Union[str, Any]] = None, img: Optional[str] = None, *args, **kwargs, ) -> Any: """ run the agent Args: task (str): The task to be performed. img (str): The image to be processed. is_last (bool): Indicates if this is the last task. Returns: Any: The output of the agent. (string, list, json, dict, yaml, xml) Examples: agent(task="What is the capital of France?") agent(task="What is the capital of France?", img="path/to/image.jpg") agent(task="What is the capital of France?", img="path/to/image.jpg", is_last=True) """ try: self.check_if_no_prompt_then_autogenerate(task) self.check_model_supports_utilities(img=img) self.short_memory.add(role=self.user_name, content=task) if self.plan_enabled is True: self.plan(task) # Set the loop count loop_count = 0 # Clear the short memory response = None # Autosave if self.autosave: log_agent_data(self.to_dict()) self.save() while ( self.max_loops == "auto" or loop_count < self.max_loops ): loop_count += 1 if self.max_loops >= 2: self.short_memory.add( role=self.agent_name, content=f"Current Internal Reasoning Loop: {loop_count}/{self.max_loops}", ) # If it is the final loop, then add the final loop message if loop_count >= 2 and loop_count == self.max_loops: self.short_memory.add( role=self.agent_name, content=f"🎉 Final Internal Reasoning Loop: {loop_count}/{self.max_loops} Prepare your comprehensive response.", ) # Dynamic temperature if self.dynamic_temperature_enabled is True: self.dynamic_temperature() # Task prompt task_prompt = ( self.short_memory.return_history_as_string() ) # Parameters attempt = 0 success = False while attempt < self.retry_attempts and not success: try: if img is not None: response = self.call_llm( task=task_prompt, img=img, current_loop=loop_count, *args, **kwargs, ) else: response = self.call_llm( task=task_prompt, current_loop=loop_count, *args, **kwargs, ) # If streaming is enabled, then don't print the response # Parse the response from the agent with the output type if exists(self.tools_list_dictionary): if isinstance(response, BaseModel): response = response.model_dump() # Parse the response from the agent with the output type response = self.parse_llm_output(response) self.short_memory.add( role=self.agent_name, content=response, ) # Print if self.print_on is True: if isinstance(response, list): self.pretty_print( f"Structured Output - Attempting Function Call Execution [{time.strftime('%H:%M:%S')}] \n\n Output: {format_data_structure(response)} ", loop_count, ) else: self.pretty_print( response, loop_count ) # Check and execute callable tools if exists(self.tools): self.tool_execution_retry( response, loop_count ) # Handle MCP tools if ( exists(self.mcp_url) or exists(self.mcp_config) or exists(self.mcp_urls) ): # Only handle MCP tools if response is not None if response is not None: self.mcp_tool_handling( response=response, current_loop=loop_count, ) else: logger.warning( f"LLM returned None response in loop {loop_count}, skipping MCP tool handling" ) # self.sentiment_and_evaluator(response) success = True # Mark as successful to exit the retry loop except Exception as e: if self.autosave is True: log_agent_data(self.to_dict()) self.save() logger.error( f"Attempt {attempt+1}/{self.retry_attempts}: Error generating response in loop {loop_count} for agent '{self.agent_name}': {str(e)} | " ) attempt += 1 if not success: if self.autosave is True: log_agent_data(self.to_dict()) self.save() logger.error( "Failed to generate a valid response after" " retry attempts." ) break # Exit the loop if all retry attempts fail # Check stopping conditions if ( self.stopping_condition is not None and self._check_stopping_condition(response) ): logger.info( f"Agent '{self.agent_name}' stopping condition met. " f"Loop: {loop_count}, Response length: {len(str(response)) if response else 0}" ) break elif ( self.stopping_func is not None and self.stopping_func(response) ): logger.info( f"Agent '{self.agent_name}' stopping function condition met. " f"Loop: {loop_count}, Response length: {len(str(response)) if response else 0}" ) break if self.interactive: # logger.info("Interactive mode enabled.") user_input = input("You: ") # User-defined exit command if ( user_input.lower() == self.custom_exit_command.lower() ): self.pretty_print( "Exiting as per user request.", loop_count=loop_count, ) break self.short_memory.add( role=self.user_name, content=user_input ) if self.loop_interval: logger.info( f"Sleeping for {self.loop_interval} seconds" ) time.sleep(self.loop_interval) if self.autosave is True: log_agent_data(self.to_dict()) self.save() # Output formatting based on output_type return history_output_formatter( self.short_memory, type=self.output_type ) except Exception as error: self._handle_run_error(error) except KeyboardInterrupt as error: self._handle_run_error(error) def __handle_run_error(self, error: any): import traceback if self.autosave is True: self.save() log_agent_data(self.to_dict()) # Get detailed error information error_type = type(error).__name__ error_message = str(error) traceback_info = traceback.format_exc() logger.error( f"Error detected running your agent {self.agent_name}\n" f"Error Type: {error_type}\n" f"Error Message: {error_message}\n" f"Traceback:\n{traceback_info}\n" f"Agent State: {self.to_dict()}\n" f"Optimize your input parameters and or add an issue on the swarms github and contact our team on discord for support ;)" ) raise error def _handle_run_error(self, error: any): # Handle error directly instead of using daemon thread # to ensure proper exception propagation self.__handle_run_error(error) async def arun( self, task: Optional[str] = None, img: Optional[str] = None, is_last: bool = False, device: str = "cpu", # gpu device_id: int = 1, all_cores: bool = True, do_not_use_cluster_ops: bool = True, all_gpus: bool = False, *args, **kwargs, ) -> Any: """ Asynchronously runs the agent with the specified parameters. Args: task (Optional[str]): The task to be performed. Defaults to None. img (Optional[str]): The image to be processed. Defaults to None. is_last (bool): Indicates if this is the last task. Defaults to False. device (str): The device to use for execution. Defaults to "cpu". device_id (int): The ID of the GPU to use if device is set to "gpu". Defaults to 1. all_cores (bool): If True, uses all available CPU cores. Defaults to True. do_not_use_cluster_ops (bool): If True, does not use cluster operations. Defaults to True. all_gpus (bool): If True, uses all available GPUs. Defaults to False. *args: Additional positional arguments. **kwargs: Additional keyword arguments. Returns: Any: The result of the asynchronous operation. Raises: Exception: If an error occurs during the asynchronous operation. """ try: return await asyncio.to_thread( self.run, task=task, img=img, *args, **kwargs, ) except Exception as error: await self._handle_run_error( error ) # Ensure this is also async if needed def __call__( self, task: Optional[str] = None, img: Optional[str] = None, *args, **kwargs, ) -> Any: """Call the agent Args: task (Optional[str]): The task to be performed. Defaults to None. img (Optional[str]): The image to be processed. Defaults to None. """ try: return self.run( task=task, img=img, *args, **kwargs, ) except Exception as error: self._handle_run_error(error) def receive_message( self, agent_name: str, task: str, *args, **kwargs ): improved_prompt = ( f"You have received a message from agent '{agent_name}':\n\n" f'"{task}"\n\n' "Please process this message and respond appropriately." ) return self.run(task=improved_prompt, *args, **kwargs) # def parse_and_execute_tools(self, response: str, *args, **kwargs): # max_retries = 3 # Maximum number of retries # retries = 0 # while retries < max_retries: # try: # logger.info("Executing tool...") # # try to Execute the tool and return a string # out = parse_and_execute_json( # functions=self.tools, # json_string=response, # parse_md=True, # *args, # **kwargs, # ) # logger.info(f"Tool Output: {out}") # # Add the output to the memory # # self.short_memory.add( # # role="Tool Executor", # # content=out, # # ) # return out # except Exception as error: # retries += 1 # logger.error( # f"Attempt {retries}: Error executing tool: {error}" # ) # if retries == max_retries: # raise error # time.sleep(1) # Wait for a bit before retrying def add_memory(self, message: str): """Add a memory to the agent Args: message (str): _description_ Returns: _type_: _description_ """ logger.info(f"Adding memory: {message}") return self.short_memory.add( role=self.agent_name, content=message ) def plan(self, task: str, *args, **kwargs) -> None: """ Create a strategic plan for executing the given task. This method generates a step-by-step plan by combining the conversation history, planning prompt, and current task. The plan is then added to the agent's short-term memory for reference during execution. Args: task (str): The task to create a plan for *args: Additional positional arguments passed to the LLM **kwargs: Additional keyword arguments passed to the LLM Returns: None: The plan is stored in memory rather than returned Raises: Exception: If planning fails, the original exception is re-raised """ try: # Get the current conversation history history = self.short_memory.get_str() plan_prompt = f"Create a comprehensive step-by-step plan to complete the following task: \n\n {task}" # Construct the planning prompt by combining history, planning prompt, and task if exists(self.planning_prompt): planning_prompt = f"{history}\n\n{self.planning_prompt}\n\nTask: {task}" else: planning_prompt = ( f"{history}\n\n{plan_prompt}\n\nTask: {task}" ) # Generate the plan using the LLM plan = self.llm.run(task=planning_prompt, *args, **kwargs) # Store the generated plan in short-term memory self.short_memory.add(role=self.agent_name, content=plan) return None except Exception as error: logger.error( f"Failed to create plan for task '{task}': {error}" ) raise error async def run_concurrent(self, task: str, *args, **kwargs): """ Run a task concurrently. Args: task (str): The task to run. """ try: logger.info(f"Running concurrent task: {task}") future = self.executor.submit( self.run, task, *args, **kwargs ) result = await asyncio.wrap_future(future) logger.info(f"Completed task: {result}") return result except Exception as error: logger.error( f"Error running agent: {error} while running concurrently" ) def run_concurrent_tasks(self, tasks: List[str], *args, **kwargs): """ Run multiple tasks concurrently. Args: tasks (List[str]): A list of tasks to run. """ try: logger.info(f"Running concurrent tasks: {tasks}") futures = [ self.executor.submit( self.run, task=task, *args, **kwargs ) for task in tasks ] results = [future.result() for future in futures] logger.info(f"Completed tasks: {results}") return results except Exception as error: logger.error(f"Error running concurrent tasks: {error}") def bulk_run(self, inputs: List[Dict[str, Any]]) -> List[str]: """ Generate responses for multiple input sets. Args: inputs (List[Dict[str, Any]]): A list of input dictionaries containing the necessary data for each run. Returns: List[str]: A list of response strings generated for each input set. Raises: Exception: If an error occurs while running the bulk tasks. """ try: logger.info(f"Running bulk tasks: {inputs}") return [self.run(**input_data) for input_data in inputs] except Exception as error: logger.info(f"Error running bulk run: {error}", "red") async def arun_batched( self, tasks: List[str], *args, **kwargs, ): """Asynchronously runs a batch of tasks.""" try: # Create a list of coroutines for each task coroutines = [ self.arun(task=task, *args, **kwargs) for task in tasks ] # Use asyncio.gather to run them concurrently results = await asyncio.gather(*coroutines) return results except Exception as error: logger.error(f"Error running batched tasks: {error}") raise def reliability_check(self): from litellm.utils import ( supports_function_calling, get_max_tokens, ) from litellm import model_list if self.system_prompt is None: logger.warning( "The system prompt is not set. Please set a system prompt for the agent to improve reliability." ) if self.agent_name is None: logger.warning( "The agent name is not set. Please set an agent name to improve reliability." ) if self.max_loops is None or self.max_loops == 0: raise AgentInitializationError( "Max loops is not provided or is set to 0. Please set max loops to 1 or more." ) if self.max_tokens is None or self.max_tokens == 0: self.max_tokens = get_max_tokens(self.model_name) if self.context_length is None or self.context_length == 0: raise AgentInitializationError( "Context length is not provided. Please set a valid context length." ) if self.tools_list_dictionary is not None: if not supports_function_calling(self.model_name): raise AgentInitializationError( f"The model '{self.model_name}' does not support function calling. Please use a model that supports function calling." ) try: if self.max_tokens > get_max_tokens(self.model_name): raise AgentInitializationError( f"Max tokens is set to {self.max_tokens}, but the model '{self.model_name}' only supports {get_max_tokens(self.model_name)} tokens. Please set max tokens to {get_max_tokens(self.model_name)} or less." ) except Exception: pass if self.model_name not in model_list: logger.warning( f"The model '{self.model_name}' is not supported. Please use a supported model, or override the model name with the 'llm' parameter, which should be a class with a 'run(task: str)' method or a '__call__' method." ) def save(self, file_path: str = None) -> None: """ Save the agent state to a file using SafeStateManager with atomic writing and backup functionality. Automatically handles complex objects and class instances. Args: file_path (str, optional): Custom path to save the state. If None, uses configured paths. Raises: OSError: If there are filesystem-related errors Exception: For other unexpected errors """ try: # Determine the save path resolved_path = ( file_path or self.saved_state_path or f"{self.agent_name}_state.json" ) # Ensure path has .json extension if not resolved_path.endswith(".json"): resolved_path += ".json" # Create full path including workspace directory full_path = os.path.join( self.workspace_dir, resolved_path ) backup_path = full_path + ".backup" temp_path = full_path + ".temp" # Ensure workspace directory exists os.makedirs(os.path.dirname(full_path), exist_ok=True) # First save to temporary file using SafeStateManager SafeStateManager.save_state(self, temp_path) # If current file exists, create backup if os.path.exists(full_path): try: os.replace(full_path, backup_path) except Exception as e: logger.warning(f"Could not create backup: {e}") # Move temporary file to final location os.replace(temp_path, full_path) # Clean up old backup if everything succeeded if os.path.exists(backup_path): try: os.remove(backup_path) except Exception as e: logger.warning( f"Could not remove backup file: {e}" ) # Log saved state information if verbose if self.verbose: self._log_saved_state_info(full_path) logger.info( f"Successfully saved agent state to: {full_path}" ) # Handle additional component saves self._save_additional_components(full_path) except OSError as e: logger.error( f"Filesystem error while saving agent state: {e}" ) raise except Exception as e: logger.error(f"Unexpected error saving agent state: {e}") raise def _save_additional_components(self, base_path: str) -> None: """Save additional agent components like memory.""" try: # Save long term memory if it exists if ( hasattr(self, "long_term_memory") and self.long_term_memory is not None ): memory_path = ( f"{os.path.splitext(base_path)[0]}_memory.json" ) try: self.long_term_memory.save(memory_path) logger.info( f"Saved long-term memory to: {memory_path}" ) except Exception as e: logger.warning( f"Could not save long-term memory: {e}" ) # Save memory manager if it exists if ( hasattr(self, "memory_manager") and self.memory_manager is not None ): manager_path = f"{os.path.splitext(base_path)[0]}_memory_manager.json" try: self.memory_manager.save_memory_snapshot( manager_path ) logger.info( f"Saved memory manager state to: {manager_path}" ) except Exception as e: logger.warning( f"Could not save memory manager: {e}" ) except Exception as e: logger.warning(f"Error saving additional components: {e}") def enable_autosave(self, interval: int = 300) -> None: """ Enable automatic saving of agent state using SafeStateManager at specified intervals. Args: interval (int): Time between saves in seconds. Defaults to 300 (5 minutes). """ def autosave_loop(): while self.autosave: try: self.save() if self.verbose: logger.debug( f"Autosaved agent state (interval: {interval}s)" ) except Exception as e: logger.error(f"Autosave failed: {e}") time.sleep(interval) self.autosave = True self.autosave_thread = threading.Thread( target=autosave_loop, daemon=True, name=f"{self.agent_name}_autosave", ) self.autosave_thread.start() logger.info(f"Enabled autosave with {interval}s interval") def disable_autosave(self) -> None: """Disable automatic saving of agent state.""" if hasattr(self, "autosave"): self.autosave = False if hasattr(self, "autosave_thread"): self.autosave_thread.join(timeout=1) delattr(self, "autosave_thread") logger.info("Disabled autosave") def cleanup(self) -> None: """Cleanup method to be called on exit. Ensures final state is saved.""" try: if getattr(self, "autosave", False): logger.info( "Performing final autosave before exit..." ) self.disable_autosave() self.save() except Exception as e: logger.error(f"Error during cleanup: {e}") def load(self, file_path: str = None) -> None: """ Load agent state from a file using SafeStateManager. Automatically preserves class instances and complex objects. Args: file_path (str, optional): Path to load state from. If None, uses default path from agent config. Raises: FileNotFoundError: If state file doesn't exist Exception: If there's an error during loading """ try: # Resolve load path conditionally with a check for self.load_state_path resolved_path = ( file_path or self.load_state_path or ( f"{self.saved_state_path}.json" if self.saved_state_path else ( f"{self.agent_name}.json" if self.agent_name else ( f"{self.workspace_dir}/{self.agent_name}_state.json" if self.workspace_dir and self.agent_name else None ) ) ) ) # Load state using SafeStateManager SafeStateManager.load_state(self, resolved_path) # Reinitialize any necessary runtime components self._reinitialize_after_load() if self.verbose: self._log_loaded_state_info(resolved_path) except FileNotFoundError: logger.error(f"State file not found: {resolved_path}") raise except Exception as e: logger.error(f"Error loading agent state: {e}") raise def _reinitialize_after_load(self) -> None: """ Reinitialize necessary components after loading state. Called automatically after load() to ensure all components are properly set up. """ try: # Reinitialize conversation if needed if ( not hasattr(self, "short_memory") or self.short_memory is None ): self.short_memory = Conversation( system_prompt=self.system_prompt, time_enabled=False, user=self.user_name, rules=self.rules, ) # Reinitialize executor if needed # if not hasattr(self, "executor") or self.executor is None: with ThreadPoolExecutor( max_workers=os.cpu_count() ) as executor: self.executor = executor # # Reinitialize tool structure if needed # if hasattr(self, 'tools') and (self.tools or getattr(self, 'list_base_models', None)): # self.tool_struct = BaseTool( # tools=self.tools, # base_models=getattr(self, 'list_base_models', None), # tool_system_prompt=self.tool_system_prompt # ) except Exception as e: logger.error(f"Error reinitializing components: {e}") raise def _log_saved_state_info(self, file_path: str) -> None: """Log information about saved state for debugging""" try: state_dict = SafeLoaderUtils.create_state_dict(self) preserved = SafeLoaderUtils.preserve_instances(self) logger.info(f"Saved agent state to: {file_path}") logger.debug( f"Saved {len(state_dict)} configuration values" ) logger.debug( f"Preserved {len(preserved)} class instances" ) if self.verbose: logger.debug("Preserved instances:") for name, instance in preserved.items(): logger.debug( f" - {name}: {type(instance).__name__}" ) except Exception as e: logger.error(f"Error logging state info: {e}") def _log_loaded_state_info(self, file_path: str) -> None: """Log information about loaded state for debugging""" try: state_dict = SafeLoaderUtils.create_state_dict(self) preserved = SafeLoaderUtils.preserve_instances(self) logger.info(f"Loaded agent state from: {file_path}") logger.debug( f"Loaded {len(state_dict)} configuration values" ) logger.debug( f"Preserved {len(preserved)} class instances" ) if self.verbose: logger.debug("Current class instances:") for name, instance in preserved.items(): logger.debug( f" - {name}: {type(instance).__name__}" ) except Exception as e: logger.error(f"Error logging state info: {e}") def get_saveable_state(self) -> Dict[str, Any]: """ Get a dictionary of all saveable state values. Useful for debugging or manual state inspection. Returns: Dict[str, Any]: Dictionary of saveable values """ return SafeLoaderUtils.create_state_dict(self) def get_preserved_instances(self) -> Dict[str, Any]: """ Get a dictionary of all preserved class instances. Useful for debugging or manual state inspection. Returns: Dict[str, Any]: Dictionary of preserved instances """ return SafeLoaderUtils.preserve_instances(self) def graceful_shutdown(self): """Gracefully shutdown the system saving the state""" logger.info("Shutting down the system...") return self.save() def analyze_feedback(self): """Analyze the feedback for issues""" feedback_counts = {} for feedback in self.feedback: if feedback in feedback_counts: feedback_counts[feedback] += 1 else: feedback_counts[feedback] = 1 print(f"Feedback counts: {feedback_counts}") def undo_last(self) -> Tuple[str, str]: """ Response the last response and return the previous state Example: # Feature 2: Undo functionality response = agent.run("Another task") print(f"Response: {response}") previous_state, message = agent.undo_last() print(message) """ if len(self.short_memory) < 2: return None, None # Remove the last response but keep the last state, short_memory is a dict self.short_memory.delete(-1) # Get the previous state previous_state = self.short_memory[-1] return previous_state, f"Restored to {previous_state}" # Response Filtering def add_response_filter(self, filter_word: str) -> None: """ Add a response filter to filter out certain words from the response Example: agent.add_response_filter("Trump") agent.run("Generate a report on Trump") """ logger.info(f"Adding response filter: {filter_word}") self.response_filters.append(filter_word) def apply_response_filters(self, response: str) -> str: """ Apply the response filters to the response """ logger.info( f"Applying response filters to response: {response}" ) for word in self.response_filters: response = response.replace(word, "[FILTERED]") return response def filtered_run(self, task: str) -> str: """ # Feature 3: Response filtering agent.add_response_filter("report") response = agent.filtered_run("Generate a report on finance") print(response) """ logger.info(f"Running filtered task: {task}") raw_response = self.run(task) return self.apply_response_filters(raw_response) def save_to_yaml(self, file_path: str) -> None: """ Save the agent to a YAML file Args: file_path (str): The path to the YAML file """ try: logger.info(f"Saving agent to YAML file: {file_path}") with open(file_path, "w") as f: yaml.dump(self.to_dict(), f) except Exception as error: logger.error(f"Error saving agent to YAML: {error}") raise error def get_llm_parameters(self): return str(vars(self.llm)) def update_system_prompt(self, system_prompt: str): """Upddate the system message""" self.system_prompt = system_prompt def update_max_loops(self, max_loops: int): """Update the max loops""" self.max_loops = max_loops def update_loop_interval(self, loop_interval: int): """Update the loop interval""" self.loop_interval = loop_interval def update_retry_attempts(self, retry_attempts: int): """Update the retry attempts""" self.retry_attempts = retry_attempts def update_retry_interval(self, retry_interval: int): """Update the retry interval""" self.retry_interval = retry_interval def reset(self): """Reset the agent""" self.short_memory = None def ingest_docs(self, docs: List[str], *args, **kwargs): """Ingest the docs into the memory Args: docs (List[str]): Documents of pdfs, text, csvs Returns: None """ try: # Process all documents and combine their content all_data = [] for doc in docs: data = data_to_text(doc) all_data.append(f"Document: {doc}\n{data}") # Combine all document content combined_data = "\n\n".join(all_data) return self.short_memory.add( role=self.user_name, content=combined_data ) except Exception as error: logger.info(f"Error ingesting docs: {error}", "red") def ingest_pdf(self, pdf: str): """Ingest the pdf into the memory Args: pdf (str): file path of pdf """ try: logger.info(f"Ingesting pdf: {pdf}") text = pdf_to_text(pdf) return self.short_memory.add( role=self.user_name, content=text ) except Exception as error: logger.info(f"Error ingesting pdf: {error}", "red") def receieve_message(self, name: str, message: str): """Receieve a message""" try: message = f"{name}: {message}" return self.short_memory.add(role=name, content=message) except Exception as error: logger.info(f"Error receiving message: {error}") raise error def send_agent_message( self, agent_name: str, message: str, *args, **kwargs ): """Send a message to the agent""" try: logger.info(f"Sending agent message: {message}") message = f"To: {agent_name}: {message}" return self.run(message, *args, **kwargs) except Exception as error: logger.info(f"Error sending agent message: {error}") raise error def add_tool(self, tool: Callable): """Add a single tool to the agent's tools list. Args: tool (Callable): The tool function to add Returns: The result of appending the tool to the tools list """ logger.info(f"Adding tool: {tool.__name__}") return self.tools.append(tool) def add_tools(self, tools: List[Callable]): """Add multiple tools to the agent's tools list. Args: tools (List[Callable]): List of tool functions to add Returns: The result of extending the tools list """ logger.info(f"Adding tools: {[t.__name__ for t in tools]}") return self.tools.extend(tools) def remove_tool(self, tool: Callable): """Remove a single tool from the agent's tools list. Args: tool (Callable): The tool function to remove Returns: The result of removing the tool from the tools list """ logger.info(f"Removing tool: {tool.__name__}") return self.tools.remove(tool) def remove_tools(self, tools: List[Callable]): """Remove multiple tools from the agent's tools list. Args: tools (List[Callable]): List of tool functions to remove """ logger.info(f"Removing tools: {[t.__name__ for t in tools]}") for tool in tools: self.tools.remove(tool) def get_docs_from_doc_folders(self): """Get the docs from the files""" try: logger.info("Getting docs from doc folders") # Get the list of files then extract them and add them to the memory files = os.listdir(self.docs_folder) # Extract the text from the files # Process each file and combine their contents all_text = "" for file in files: file_path = os.path.join(self.docs_folder, file) text = data_to_text(file_path) all_text += f"\nContent from {file}:\n{text}\n" # Add the combined content to memory return self.short_memory.add( role=self.user_name, content=all_text ) except Exception as error: logger.error( f"Error getting docs from doc folders: {error}" ) raise error def memory_query(self, task: str = None, *args, **kwargs) -> None: try: # Query the long term memory if self.long_term_memory is not None: formatter.print_panel(f"Querying RAG for: {task}") memory_retrieval = self.long_term_memory.query( task, *args, **kwargs ) memory_retrieval = ( f"Documents Available: {str(memory_retrieval)}" ) # # Count the tokens # memory_token_count = count_tokens( # memory_retrieval # ) # if memory_token_count > self.memory_chunk_size: # # Truncate the memory by the memory chunk size # memory_retrieval = self.truncate_string_by_tokens( # memory_retrieval, self.memory_chunk_size # ) self.short_memory.add( role="Database", content=memory_retrieval, ) return None except Exception as e: logger.error(f"An error occurred: {e}") raise e def sentiment_analysis_handler(self, response: str = None): """ Performs sentiment analysis on the given response and stores the result in the short-term memory. Args: response (str): The response to analyze sentiment for. Returns: None """ try: # Sentiment analysis if self.sentiment_analyzer: sentiment = self.sentiment_analyzer(response) print(f"Sentiment: {sentiment}") if sentiment > self.sentiment_threshold: print( f"Sentiment: {sentiment} is above" " threshold:" f" {self.sentiment_threshold}" ) elif sentiment < self.sentiment_threshold: print( f"Sentiment: {sentiment} is below" " threshold:" f" {self.sentiment_threshold}" ) self.short_memory.add( role=self.agent_name, content=sentiment, ) except Exception as e: print(f"Error occurred during sentiment analysis: {e}") def stream_response( self, response: str, delay: float = 0.001 ) -> None: """ Streams the response token by token. Args: response (str): The response text to be streamed. delay (float, optional): Delay in seconds between printing each token. Default is 0.1 seconds. Raises: ValueError: If the response is not provided. Exception: For any errors encountered during the streaming process. Example: response = "This is a sample response from the API." stream_response(response) """ # Check for required inputs if not response: raise ValueError("Response is required.") try: # Stream and print the response token by token for token in response.split(): print(token, end=" ", flush=True) time.sleep(delay) print() # Ensure a newline after streaming except Exception as e: print(f"An error occurred during streaming: {e}") def check_available_tokens(self): # Log the amount of tokens left in the memory and in the task if self.tokenizer is not None: tokens_used = count_tokens( self.short_memory.return_history_as_string() ) logger.info( f"Tokens available: {self.context_length - tokens_used}" ) return tokens_used def tokens_checks(self): # Check the tokens available tokens_used = count_tokens( self.short_memory.return_history_as_string() ) out = self.check_available_tokens() logger.info( f"Tokens available: {out} Context Length: {self.context_length} Tokens in memory: {tokens_used}" ) return out def log_step_metadata( self, loop: int, task: str, response: str ) -> Step: """Log metadata for each step of agent execution.""" # Generate unique step ID step_id = f"step_{loop}_{uuid.uuid4().hex}" # Calculate token usage # full_memory = self.short_memory.return_history_as_string() # prompt_tokens = count_tokens(full_memory) # completion_tokens = count_tokens(response) # total_tokens = prompt_tokens + completion_tokens total_tokens = (count_tokens(task) + count_tokens(response),) # # Get memory responses # memory_responses = { # "short_term": ( # self.short_memory.return_history_as_string() # if self.short_memory # else None # ), # "long_term": ( # self.long_term_memory.query(task) # if self.long_term_memory # else None # ), # } # # Get tool responses if tool was used # if self.tools: # try: # tool_call_output = parse_and_execute_json( # self.tools, response, parse_md=True # ) # if tool_call_output: # { # "tool_name": tool_call_output.get( # "tool_name", "unknown" # ), # "tool_args": tool_call_output.get("args", {}), # "tool_output": str( # tool_call_output.get("output", "") # ), # } # except Exception as e: # logger.debug( # f"No tool call detected in response: {e}" # ) # Create memory usage tracking # memory_usage = { # "short_term": ( # len(self.short_memory.messages) # if self.short_memory # else 0 # ), # "long_term": ( # self.long_term_memory.count # if self.long_term_memory # else 0 # ), # "responses": memory_responses, # } step_log = Step( step_id=step_id, time=time.time(), tokens=total_tokens, response=AgentChatCompletionResponse( id=self.id, agent_name=self.agent_name, object="chat.completion", choices=ChatCompletionResponseChoice( index=loop, input=task, message=ChatMessageResponse( role=self.agent_name, content=response, ), ), # usage=UsageInfo( # prompt_tokens=prompt_tokens, # completion_tokens=completion_tokens, # total_tokens=total_tokens, # ), # tool_calls=( # [] if tool_response is None else [tool_response] # ), # memory_usage=None, ), ) # Update total tokens if agent_output exists # if hasattr(self, "agent_output"): # self.agent_output.total_tokens += ( # self.response.total_tokens # ) # Add step to agent output tracking self.step_pool.append(step_log) def update_tool_usage( self, step_id: str, tool_name: str, tool_args: dict, tool_response: Any, ): """Update tool usage information for a specific step.""" for step in self.agent_output.steps: if step.step_id == step_id: step.response.tool_calls.append( { "tool": tool_name, "arguments": tool_args, "response": str(tool_response), } ) break def _serialize_callable( self, attr_value: Callable ) -> Dict[str, Any]: """ Serializes callable attributes by extracting their name and docstring. Args: attr_value (Callable): The callable to serialize. Returns: Dict[str, Any]: Dictionary with name and docstring of the callable. """ return { "name": getattr( attr_value, "__name__", type(attr_value).__name__ ), "doc": getattr(attr_value, "__doc__", None), } def _serialize_attr(self, attr_name: str, attr_value: Any) -> Any: """ Serializes an individual attribute, handling non-serializable objects. Args: attr_name (str): The name of the attribute. attr_value (Any): The value of the attribute. Returns: Any: The serialized value of the attribute. """ try: if callable(attr_value): return self._serialize_callable(attr_value) elif hasattr(attr_value, "to_dict"): return ( attr_value.to_dict() ) # Recursive serialization for nested objects else: json.dumps( attr_value ) # Attempt to serialize to catch non-serializable objects return attr_value except (TypeError, ValueError): return f"" def to_dict(self) -> Dict[str, Any]: """ Converts all attributes of the class, including callables, into a dictionary. Handles non-serializable attributes by converting them or skipping them. Returns: Dict[str, Any]: A dictionary representation of the class attributes. """ return { attr_name: self._serialize_attr(attr_name, attr_value) for attr_name, attr_value in self.__dict__.items() } def to_json(self, indent: int = 4, *args, **kwargs): return json.dumps( self.to_dict(), indent=indent, *args, **kwargs ) def to_yaml(self, indent: int = 4, *args, **kwargs): return yaml.dump( self.to_dict(), indent=indent, *args, **kwargs ) def to_toml(self, *args, **kwargs): return toml.dumps(self.to_dict(), *args, **kwargs) def model_dump_json(self): logger.info( f"Saving {self.agent_name} model to JSON in the {self.workspace_dir} directory" ) create_file_in_folder( self.workspace_dir, f"{self.agent_name}.json", str(self.to_json()), ) return f"Model saved to {self.workspace_dir}/{self.agent_name}.json" def model_dump_yaml(self): logger.info( f"Saving {self.agent_name} model to YAML in the {self.workspace_dir} directory" ) create_file_in_folder( self.workspace_dir, f"{self.agent_name}.yaml", str(self.to_yaml()), ) return f"Model saved to {self.workspace_dir}/{self.agent_name}.yaml" def handle_tool_schema_ops(self): if exists(self.tool_schema): logger.info(f"Tool schema provided: {self.tool_schema}") output = self.tool_struct.base_model_to_dict( self.tool_schema, output_str=True ) # Add the tool schema to the short memory self.short_memory.add( role=self.agent_name, content=output ) # If multiple base models, then conver them. if exists(self.list_base_models): logger.info( "Multiple base models provided, Automatically converting to OpenAI function" ) schemas = self.tool_struct.multi_base_models_to_dict( output_str=True ) # If the output is a string then add it to the memory self.short_memory.add( role=self.agent_name, content=schemas ) return None def call_llm( self, task: str, img: Optional[str] = None, current_loop: int = 0, *args, **kwargs, ) -> str: """ Calls the appropriate method on the `llm` object based on the given task. Args: task (str): The task to be performed by the `llm` object. img (str, optional): Path or URL to an image file. audio (str, optional): Path or URL to an audio file. *args: Variable length argument list. **kwargs: Arbitrary keyword arguments. Returns: str: The result of the method call on the `llm` object. Raises: AttributeError: If no suitable method is found in the llm object. TypeError: If task is not a string or llm object is None. ValueError: If task is empty. """ # Filter out is_last from kwargs if present if "is_last" in kwargs: del kwargs["is_last"] try: # Set streaming parameter in LLM if streaming is enabled if self.streaming_on and hasattr(self.llm, "stream"): original_stream = self.llm.stream self.llm.stream = True if img is not None: streaming_response = self.llm.run( task=task, img=img, *args, **kwargs ) else: streaming_response = self.llm.run( task=task, *args, **kwargs ) # If we get a streaming response, handle it with the new streaming panel if hasattr( streaming_response, "__iter__" ) and not isinstance(streaming_response, str): # Check print_on parameter for different streaming behaviors if self.print_on is False: # Silent streaming - no printing, just collect chunks chunks = [] for chunk in streaming_response: if ( hasattr(chunk, "choices") and chunk.choices[0].delta.content ): content = chunk.choices[ 0 ].delta.content chunks.append(content) complete_response = "".join(chunks) else: # Collect chunks for conversation saving collected_chunks = [] def on_chunk_received(chunk: str): """Callback to collect chunks as they arrive""" collected_chunks.append(chunk) # Optional: Save each chunk to conversation in real-time # This creates a more detailed conversation history if self.verbose: logger.debug( f"Streaming chunk received: {chunk[:50]}..." ) # Use the streaming panel to display and collect the response complete_response = formatter.print_streaming_panel( streaming_response, title=f"🤖 Agent: {self.agent_name} Loops: {current_loop}", style=None, # Use random color like non-streaming approach collect_chunks=True, on_chunk_callback=on_chunk_received, ) # Restore original stream setting self.llm.stream = original_stream # Return the complete response for further processing return complete_response else: # Restore original stream setting self.llm.stream = original_stream return streaming_response else: # Non-streaming call if img is not None: out = self.llm.run( task=task, img=img, *args, **kwargs ) else: out = self.llm.run(task=task, *args, **kwargs) return out except AgentLLMError as e: logger.error( f"Error calling LLM: {e}. Task: {task}, Args: {args}, Kwargs: {kwargs}" ) raise e def handle_sop_ops(self): # If the user inputs a list of strings for the sop then join them and set the sop if exists(self.sop_list): self.sop = "\n".join(self.sop_list) self.short_memory.add( role=self.user_name, content=self.sop ) if exists(self.sop): self.short_memory.add( role=self.user_name, content=self.sop ) logger.info("SOP Uploaded into the memory") def run( self, task: Optional[Union[str, Any]] = None, img: Optional[str] = None, imgs: Optional[List[str]] = None, correct_answer: Optional[str] = None, *args, **kwargs, ) -> Any: """ Executes the agent's run method on a specified device, with optional scheduling. This method attempts to execute the agent's run method on a specified device, either CPU or GPU. It logs the device selection and the number of cores or GPU ID used. If the device is set to CPU, it can use all available cores or a specific core specified by `device_id`. If the device is set to GPU, it uses the GPU specified by `device_id`. If a `scheduled_date` is provided, the method will wait until that date and time before executing the task. Args: task (Optional[str], optional): The task to be executed. Defaults to None. img (Optional[str], optional): The image to be processed. Defaults to None. imgs (Optional[List[str]], optional): The list of images to be processed. Defaults to None. *args: Additional positional arguments to be passed to the execution method. **kwargs: Additional keyword arguments to be passed to the execution method. Returns: Any: The result of the execution. Raises: ValueError: If an invalid device is specified. Exception: If any other error occurs during execution. """ if not isinstance(task, str): task = format_data_structure(task) try: if exists(imgs): output = self.run_multiple_images( task=task, imgs=imgs, *args, **kwargs ) elif exists(correct_answer): output = self.continuous_run_with_answer( task=task, img=img, correct_answer=correct_answer, *args, **kwargs, ) else: output = self._run( task=task, img=img, *args, **kwargs, ) return output except ValueError as e: self._handle_run_error(e) def handle_artifacts( self, text: str, file_output_path: str, file_extension: str ) -> None: """Handle creating and saving artifacts with error handling.""" try: # Ensure file_extension starts with a dot if not file_extension.startswith("."): file_extension = "." + file_extension # If file_output_path doesn't have an extension, treat it as a directory # and create a default filename based on timestamp if not os.path.splitext(file_output_path)[1]: timestamp = time.strftime("%Y%m%d_%H%M%S") filename = f"artifact_{timestamp}{file_extension}" full_path = os.path.join(file_output_path, filename) else: full_path = file_output_path # Create the directory if it doesn't exist os.makedirs(os.path.dirname(full_path), exist_ok=True) logger.info(f"Creating artifact for file: {full_path}") artifact = Artifact( file_path=full_path, file_type=file_extension, contents=text, edit_count=0, ) logger.info( f"Saving artifact with extension: {file_extension}" ) artifact.save_as(file_extension) logger.success( f"Successfully saved artifact to {full_path}" ) except ValueError as e: logger.error( f"Invalid input values for artifact: {str(e)}" ) raise except IOError as e: logger.error(f"Error saving artifact to file: {str(e)}") raise except Exception as e: logger.error( f"Unexpected error handling artifact: {str(e)}" ) raise def showcase_config(self): # Convert all values in config_dict to concise string representations config_dict = self.to_dict() for key, value in config_dict.items(): if isinstance(value, list): # Format list as a comma-separated string config_dict[key] = ", ".join( str(item) for item in value ) elif isinstance(value, dict): # Format dict as key-value pairs in a single string config_dict[key] = ", ".join( f"{k}: {v}" for k, v in value.items() ) else: # Ensure any non-iterable value is a string config_dict[key] = str(value) return formatter.print_table( f"Agent: {self.agent_name} Configuration", config_dict ) def talk_to( self, agent: Any, task: str, img: str = None, *args, **kwargs ) -> Any: """ Talk to another agent. """ # return agent.run(f"{agent.agent_name}: {task}", img, *args, **kwargs) output = self.run( f"{self.agent_name}: {task}", img, *args, **kwargs ) return agent.run( task=f"From {self.agent_name}: Message: {output}", img=img, *args, **kwargs, ) def talk_to_multiple_agents( self, agents: List[Union[Any, Callable]], task: str, *args, **kwargs, ) -> Any: """ Talk to multiple agents. """ # o# Use the existing executor from self.executor or create a new one if needed with ThreadPoolExecutor() as executor: # Create futures for each agent conversation futures = [ executor.submit( self.talk_to, agent, task, *args, **kwargs ) for agent in agents ] # Wait for all futures to complete and collect results outputs = [] for future in futures: try: result = future.result() outputs.append(result) except Exception as e: logger.error(f"Error in agent communication: {e}") outputs.append( None ) # or handle error case as needed return outputs def get_agent_role(self) -> str: """ Get the role of the agent. """ return self.role def pretty_print(self, response: str, loop_count: int): """Print the response in a formatted panel""" # Handle None response if response is None: response = "No response generated" if self.print_on: formatter.print_panel( response, f"Agent Name {self.agent_name} [Max Loops: {loop_count} ]", ) def parse_llm_output(self, response: Any): """Parse and standardize the output from the LLM. Args: response (Any): The response from the LLM in any format Returns: str: Standardized string output Raises: ValueError: If the response format is unexpected and can't be handled """ try: if isinstance(response, dict): if "choices" in response: return response["choices"][0]["message"][ "content" ] return json.dumps( response ) # Convert other dicts to string elif isinstance(response, BaseModel): response = response.model_dump() # Handle List[BaseModel] responses elif ( isinstance(response, list) and response and isinstance(response[0], BaseModel) ): return [item.model_dump() for item in response] return response except AgentChatCompletionResponse as e: logger.error(f"Error parsing LLM output: {e}") raise ValueError( f"Failed to parse LLM output: {type(response)}" ) def sentiment_and_evaluator(self, response: str): if self.evaluator: logger.info("Evaluating response...") evaluated_response = self.evaluator(response) print("Evaluated Response:" f" {evaluated_response}") self.short_memory.add( role="Evaluator", content=evaluated_response, ) # Sentiment analysis if self.sentiment_analyzer: logger.info("Analyzing sentiment...") self.sentiment_analysis_handler(response) def output_cleaner_op(self, response: str): # Apply the cleaner function to the response if self.output_cleaner is not None: logger.info("Applying output cleaner to response.") response = self.output_cleaner(response) logger.info(f"Response after output cleaner: {response}") self.short_memory.add( role="Output Cleaner", content=response, ) def mcp_tool_handling( self, response: any, current_loop: Optional[int] = 0 ): try: if exists(self.mcp_url): # Execute the tool call tool_response = asyncio.run( execute_tool_call_simple( response=response, server_path=self.mcp_url, ) ) elif exists(self.mcp_config): # Execute the tool call tool_response = asyncio.run( execute_tool_call_simple( response=response, connection=self.mcp_config, ) ) elif exists(self.mcp_urls): tool_response = execute_multiple_tools_on_multiple_mcp_servers_sync( responses=response, urls=self.mcp_urls, output_type="json", ) # tool_response = format_data_structure(tool_response) # print(f"Multiple MCP Tool Response: {tool_response}") else: raise AgentMCPConnectionError( "mcp_url must be either a string URL or MCPConnection object" ) # Get the text content from the tool response # execute_tool_call_simple returns a string directly, not an object with content attribute text_content = f"MCP Tool Response: \n\n {json.dumps(tool_response, indent=2)}" if self.print_on is True: formatter.print_panel( content=text_content, title="MCP Tool Response: 🛠️", style="green", ) # Add to the memory self.short_memory.add( role="Tool Executor", content=text_content, ) # Create a temporary LLM instance without tools for the follow-up call try: temp_llm = self.temp_llm_instance_for_tool_summary() summary = temp_llm.run( task=self.short_memory.get_str() ) except Exception as e: logger.error( f"Error calling LLM after MCP tool execution: {e}" ) # Fallback: provide a default summary summary = "I successfully executed the MCP tool and retrieved the information above." if self.print_on is True: self.pretty_print(summary, loop_count=current_loop) # Add to the memory self.short_memory.add( role=self.agent_name, content=summary ) except AgentMCPToolError as e: logger.error(f"Error in MCP tool: {e}") raise e def temp_llm_instance_for_tool_summary(self): return LiteLLM( model_name=self.model_name, temperature=self.temperature, max_tokens=self.max_tokens, system_prompt=self.system_prompt, stream=False, # Always disable streaming for tool summaries tools_list_dictionary=None, parallel_tool_calls=False, base_url=self.llm_base_url, api_key=self.llm_api_key, ) def execute_tools(self, response: any, loop_count: int): # Handle None response gracefully if response is None: logger.warning( f"Cannot execute tools with None response in loop {loop_count}. " "This may indicate the LLM did not return a valid response." ) return try: output = self.tool_struct.execute_function_calls_from_api_response( response ) except Exception as e: # Retry the tool call output = self.tool_struct.execute_function_calls_from_api_response( response ) if output is None: logger.error(f"Error executing tools: {e}") raise e self.short_memory.add( role="Tool Executor", content=format_data_structure(output), ) if self.print_on is True: self.pretty_print( f"Tool Executed Successfully [{time.strftime('%H:%M:%S')}]", loop_count, ) # Now run the LLM again without tools - create a temporary LLM instance # instead of modifying the cached one # Create a temporary LLM instance without tools for the follow-up call if self.tool_call_summary is True: temp_llm = self.temp_llm_instance_for_tool_summary() tool_response = temp_llm.run( f""" Please analyze and summarize the following tool execution output in a clear and concise way. Focus on the key information and insights that would be most relevant to the user's original request. If there are any errors or issues, highlight them prominently. Tool Output: {output} """ ) self.short_memory.add( role=self.agent_name, content=tool_response, ) if self.print_on is True: self.pretty_print( tool_response, loop_count, ) def list_output_types(self): return OutputType def run_multiple_images( self, task: str, imgs: List[str], *args, **kwargs ): """ Run the agent with multiple images using concurrent processing. Args: task (str): The task to be performed on each image. imgs (List[str]): List of image paths or URLs to process. *args: Additional positional arguments to pass to the agent's run method. **kwargs: Additional keyword arguments to pass to the agent's run method. Returns: List[Any]: A list of outputs generated for each image in the same order as the input images. Examples: >>> agent = Agent() >>> outputs = agent.run_multiple_images( ... task="Describe what you see in this image", ... imgs=["image1.jpg", "image2.png", "image3.jpeg"] ... ) >>> print(f"Processed {len(outputs)} images") Processed 3 images Raises: Exception: If an error occurs while processing any of the images. """ # Calculate number of workers as 95% of available CPU cores cpu_count = os.cpu_count() max_workers = max(1, int(cpu_count * 0.95)) # Use ThreadPoolExecutor for concurrent processing with ThreadPoolExecutor(max_workers=max_workers) as executor: # Submit all image processing tasks future_to_img = { executor.submit( self.run, task=task, img=img, *args, **kwargs ): img for img in imgs } # Collect results in order outputs = [] for future in future_to_img: try: output = future.result() outputs.append(output) except Exception as e: logger.error(f"Error processing image: {e}") outputs.append( None ) # or raise the exception based on your preference # Combine the outputs into a single string if summarization is enabled if self.summarize_multiple_images is True: output = "\n".join(outputs) prompt = f""" You have already analyzed {len(outputs)} images and provided detailed descriptions for each one. Now, based on your previous analysis of these images, create a comprehensive report that: 1. Synthesizes the key findings across all images 2. Identifies common themes, patterns, or relationships between the images 3. Provides an overall summary that captures the most important insights 4. Highlights any notable differences or contrasts between the images Here are your previous analyses of the images: {output} Please create a well-structured report that brings together your insights from all {len(outputs)} images. """ outputs = self.run(task=prompt, *args, **kwargs) return outputs def continuous_run_with_answer( self, task: str, img: Optional[str] = None, correct_answer: str = None, max_attempts: int = 10, ): """ Run the agent with the task until the correct answer is provided. Args: task (str): The task to be performed correct_answer (str): The correct answer that must be found in the response max_attempts (int): Maximum number of attempts before giving up (default: 10) Returns: str: The response containing the correct answer Raises: Exception: If max_attempts is reached without finding the correct answer """ attempts = 0 while attempts < max_attempts: attempts += 1 if self.verbose: logger.info( f"Attempt {attempts}/{max_attempts} to find correct answer" ) response = self._run(task=task, img=img) # Check if the correct answer is in the response (case-insensitive) if correct_answer.lower() in response.lower(): if self.verbose: logger.info( f"Correct answer found on attempt {attempts}" ) return response else: # Add feedback to help guide the agent feedback = "Your previous response was incorrect. Think carefully about the question and ensure your response directly addresses what was asked." self.short_memory.add(role="User", content=feedback) if self.verbose: logger.info( f"Correct answer not found. Expected: '{correct_answer}'" ) # If we reach here, we've exceeded max_attempts raise Exception( f"Failed to find correct answer '{correct_answer}' after {max_attempts} attempts" ) def tool_execution_retry(self, response: any, loop_count: int): """ Execute tools with retry logic for handling failures. This method attempts to execute tools based on the LLM response. If the response is None, it logs a warning and skips execution. If an exception occurs during tool execution, it logs the error with full traceback and retries the operation using the configured retry attempts. Args: response (any): The response from the LLM that may contain tool calls to execute. Can be None if the LLM failed to provide a valid response. loop_count (int): The current iteration loop number for logging and debugging purposes. Returns: None Raises: Exception: Re-raises any exception that occurs during tool execution after all retry attempts have been exhausted. Note: - Uses self.tool_retry_attempts for the maximum number of retry attempts - Logs detailed error information including agent name and loop count - Skips execution gracefully if response is None """ try: if response is not None: self.execute_tools( response=response, loop_count=loop_count, ) else: logger.warning( f"Agent '{self.agent_name}' received None response from LLM in loop {loop_count}. " f"This may indicate an issue with the model or prompt. Skipping tool execution." ) except Exception as e: logger.error( f"Agent '{self.agent_name}' encountered error during tool execution in loop {loop_count}: {str(e)}. " f"Full traceback: {traceback.format_exc()}. " f"Attempting to retry tool execution with 3 attempts" ) def add_tool_schema(self, tool_schema: dict): self.tools_list_dictionary = [tool_schema] self.output_type = "dict-all-except-first" def add_multiple_tool_schemas(self, tool_schemas: list[dict]): self.tools_list_dictionary = tool_schemas self.output_type = "dict-all-except-first"