from unittest.mock import patch # Import necessary modules import pytest import torch from transformers import BioGptForCausalLM, BioGptTokenizer # Fixture for BioGPT instance @pytest.fixture def biogpt_instance(): from swarms.models import ( BioGPT, ) return BioGPT() # 36. Test if BioGPT provides a response for a simple biomedical question def test_biomedical_response_1(biogpt_instance): question = "What are the functions of the mitochondria?" response = biogpt_instance(question) assert response and isinstance(response, str) # 37. Test for a genetics-based question def test_genetics_response(biogpt_instance): question = "Can you explain the Mendelian inheritance?" response = biogpt_instance(question) assert response and isinstance(response, str) # 38. Test for a question about viruses def test_virus_response(biogpt_instance): question = "How do RNA viruses replicate?" response = biogpt_instance(question) assert response and isinstance(response, str) # 39. Test for a cell biology related question def test_cell_biology_response(biogpt_instance): question = "Describe the cell cycle and its phases." response = biogpt_instance(question) assert response and isinstance(response, str) # 40. Test for a question about protein structure def test_protein_structure_response(biogpt_instance): question = ( "What's the difference between alpha helix and beta sheet structures in" " proteins?" ) response = biogpt_instance(question) assert response and isinstance(response, str) # 41. Test for a pharmacology question def test_pharmacology_response(biogpt_instance): question = "How do beta blockers work?" response = biogpt_instance(question) assert response and isinstance(response, str) # 42. Test for an anatomy-based question def test_anatomy_response(biogpt_instance): question = "Describe the structure of the human heart." response = biogpt_instance(question) assert response and isinstance(response, str) # 43. Test for a question about bioinformatics def test_bioinformatics_response(biogpt_instance): question = "What is a BLAST search?" response = biogpt_instance(question) assert response and isinstance(response, str) # 44. Test for a neuroscience question def test_neuroscience_response(biogpt_instance): question = "Explain the function of synapses in the nervous system." response = biogpt_instance(question) assert response and isinstance(response, str) # 45. Test for an immunology question def test_immunology_response(biogpt_instance): question = "What is the role of T cells in the immune response?" response = biogpt_instance(question) assert response and isinstance(response, str) def test_init(bio_gpt): assert bio_gpt.model_name == "microsoft/biogpt" assert bio_gpt.max_length == 500 assert bio_gpt.num_return_sequences == 5 assert bio_gpt.do_sample is True assert bio_gpt.min_length == 100 def test_call(bio_gpt, monkeypatch): def mock_pipeline(*args, **kwargs): class MockGenerator: def __call__(self, text, **kwargs): return ["Generated text"] return MockGenerator() monkeypatch.setattr("transformers.pipeline", mock_pipeline) result = bio_gpt("Input text") assert result == ["Generated text"] def test_get_features(bio_gpt): features = bio_gpt.get_features("Input text") assert "last_hidden_state" in features def test_beam_search_decoding(bio_gpt): generated_text = bio_gpt.beam_search_decoding("Input text") assert isinstance(generated_text, str) def test_set_pretrained_model(bio_gpt): bio_gpt.set_pretrained_model("new_model") assert bio_gpt.model_name == "new_model" def test_get_config(bio_gpt): config = bio_gpt.get_config() assert "vocab_size" in config def test_save_load_model(tmp_path, bio_gpt): bio_gpt.save_model(tmp_path) bio_gpt.load_from_path(tmp_path) assert bio_gpt.model_name == "microsoft/biogpt" def test_print_model(capsys, bio_gpt): bio_gpt.print_model() captured = capsys.readouterr() assert "BioGptForCausalLM" in captured.out # 26. Test if set_pretrained_model changes the model_name def test_set_pretrained_model_name_change(biogpt_instance): biogpt_instance.set_pretrained_model("new_model_name") assert biogpt_instance.model_name == "new_model_name" # 27. Test get_config return type def test_get_config_return_type(biogpt_instance): config = biogpt_instance.get_config() assert isinstance(config, type(biogpt_instance.model.config)) # 28. Test saving model functionality by checking if files are created @patch.object(BioGptForCausalLM, "save_pretrained") @patch.object(BioGptTokenizer, "save_pretrained") def test_save_model(mock_save_model, mock_save_tokenizer, biogpt_instance): path = "test_path" biogpt_instance.save_model(path) mock_save_model.assert_called_once_with(path) mock_save_tokenizer.assert_called_once_with(path) # 29. Test loading model from path @patch.object(BioGptForCausalLM, "from_pretrained") @patch.object(BioGptTokenizer, "from_pretrained") def test_load_from_path(mock_load_model, mock_load_tokenizer, biogpt_instance): path = "test_path" biogpt_instance.load_from_path(path) mock_load_model.assert_called_once_with(path) mock_load_tokenizer.assert_called_once_with(path) # 30. Test print_model doesn't raise any error def test_print_model_metadata(biogpt_instance): try: biogpt_instance.print_model() except Exception as e: pytest.fail(f"print_model() raised an exception: {e}") # 31. Test that beam_search_decoding uses the correct number of beams @patch.object(BioGptForCausalLM, "generate") def test_beam_search_decoding_num_beams(mock_generate, biogpt_instance): biogpt_instance.beam_search_decoding("test_sentence", num_beams=7) _, kwargs = mock_generate.call_args assert kwargs["num_beams"] == 7 # 32. Test if beam_search_decoding handles early_stopping @patch.object(BioGptForCausalLM, "generate") def test_beam_search_decoding_early_stopping(mock_generate, biogpt_instance): biogpt_instance.beam_search_decoding("test_sentence", early_stopping=False) _, kwargs = mock_generate.call_args assert kwargs["early_stopping"] is False # 33. Test get_features return type def test_get_features_return_type(biogpt_instance): result = biogpt_instance.get_features("This is a sample text.") assert isinstance(result, torch.nn.modules.module.Module) # 34. Test if default model is set correctly during initialization def test_default_model_name(biogpt_instance): assert biogpt_instance.model_name == "microsoft/biogpt"