import os from dotenv import load_dotenv from swarm_models import OpenAIChat from swarms import Agent, GroupChat, expertise_based if __name__ == "__main__": load_dotenv() # Get the OpenAI API key from the environment variable api_key = os.getenv("OPENAI_API_KEY") # Create an instance of the OpenAIChat class model = OpenAIChat( openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1, ) # Example agents agent1 = Agent( agent_name="Financial-Analysis-Agent", system_prompt="You are a financial analyst specializing in investment strategies.", llm=model, max_loops=1, autosave=False, dashboard=False, verbose=True, dynamic_temperature_enabled=True, user_name="swarms_corp", retry_attempts=1, context_length=200000, output_type="string", streaming_on=False, ) agent2 = Agent( agent_name="Tax-Adviser-Agent", system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.", llm=model, max_loops=1, autosave=False, dashboard=False, verbose=True, dynamic_temperature_enabled=True, user_name="swarms_corp", retry_attempts=1, context_length=200000, output_type="string", streaming_on=False, ) agents = [agent1, agent2] chat = GroupChat( name="Investment Advisory", description="Financial and tax analysis group", agents=agents, speaker_fn=expertise_based, ) history = chat.run( "How to optimize tax strategy for investments?" ) print(history.model_dump_json(indent=2))