import os from swarms import Agent from swarm_models import OpenAIChat from swarms.structs.agents_available import showcase_available_agents # Get the OpenAI API key from the environment variable api_key = os.getenv("OPENAI_API_KEY") # Create an instance of the OpenAIChat class model = OpenAIChat( api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 ) # Initialize the Claims Director agent director_agent = Agent( agent_name="ClaimsDirector", agent_description="Oversees and coordinates the medical insurance claims processing workflow", system_prompt="""You are the Claims Director responsible for managing the medical insurance claims process. Assign and prioritize tasks between claims processors and auditors. Ensure claims are handled efficiently and accurately while maintaining compliance with insurance policies and regulations.""", llm=model, max_loops=1, dashboard=False, streaming_on=True, verbose=True, stopping_token="", state_save_file_type="json", saved_state_path="director_agent.json", ) # Initialize Claims Processor agent processor_agent = Agent( agent_name="ClaimsProcessor", agent_description="Reviews and processes medical insurance claims, verifying coverage and eligibility", system_prompt="""Review medical insurance claims for completeness and accuracy. Verify patient eligibility, coverage details, and process claims according to policy guidelines. Flag any claims requiring special review.""", llm=model, max_loops=1, dashboard=False, streaming_on=True, verbose=True, stopping_token="", state_save_file_type="json", saved_state_path="processor_agent.json", ) # Initialize Claims Auditor agent auditor_agent = Agent( agent_name="ClaimsAuditor", agent_description="Audits processed claims for accuracy and compliance with policies and regulations", system_prompt="""Audit processed insurance claims for accuracy and compliance. Review claim decisions, identify potential fraud or errors, and ensure all processing follows established guidelines and regulations.""", llm=model, max_loops=1, dashboard=False, streaming_on=True, verbose=True, stopping_token="", state_save_file_type="json", saved_state_path="auditor_agent.json", ) # Create a list of agents agents = [director_agent, processor_agent, auditor_agent] print(showcase_available_agents(agents=agents))