import os from dotenv import load_dotenv from swarm_models import OpenAIChat from swarms import Agent from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) from new_features_examples.async_executor import HighSpeedExecutor load_dotenv() # Get the OpenAI API key from the environment variable api_key = os.getenv("OPENAI_API_KEY") # Create an instance of the OpenAIChat class model = OpenAIChat( openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 ) # Initialize the agent agent = Agent( agent_name="Financial-Analysis-Agent", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, llm=model, max_loops=1, # autosave=True, # dashboard=False, # verbose=True, # dynamic_temperature_enabled=True, # saved_state_path="finance_agent.json", # user_name="swarms_corp", # retry_attempts=1, # context_length=200000, # return_step_meta=True, # output_type="json", # "json", "dict", "csv" OR "string" soon "yaml" and # auto_generate_prompt=False, # Auto generate prompt for the agent based on name, description, and system prompt, task # # artifacts_on=True, # artifacts_output_path="roth_ira_report", # artifacts_file_extension=".txt", # max_tokens=8000, # return_history=True, ) def execute_agent( task: str = "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria. Create a report on this question.", ): return agent.run(task) executor = HighSpeedExecutor() results = executor.run(execute_agent, 2) print(results)