import os from swarms.structs.queue_swarm import TaskQueueSwarm from swarms import Agent, OpenAIChat from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) # Example usage: api_key = os.getenv("OPENAI_API_KEY") # Model model = OpenAIChat( openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 ) # Initialize your agents (assuming the Agent class and model are already defined) agents = [ Agent( agent_name=f"Financial-Analysis-Agent-Task-Queue-swarm-{i}", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, llm=model, max_loops=1, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=True, saved_state_path="finance_agent.json", user_name="swarms_corp", retry_attempts=1, context_length=200000, return_step_meta=False, ) for i in range(10) ] # Create a Swarm with the list of agents swarm = TaskQueueSwarm( agents=agents, return_metadata_on=True, autosave_on=True, save_file_path="swarm_run_metadata.json", ) # Add tasks to the swarm swarm.add_task( "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?" ) swarm.add_task("Analyze the financial risks of investing in tech stocks.") # Keep adding tasks as needed... # swarm.add_task("...") # Run the swarm and get the output out = swarm.run() # Print the output print(out) # Export the swarm metadata swarm.export_metadata()