# Agent with DeepSeek - Add your `DEEPSEEK_API_KEY` in the `.env` file - Select your model_name like `deepseek/deepseek-chat` follows [LiteLLM conventions](https://docs.litellm.ai/docs/providers/deepseek) - Execute your agent! ```python from swarms import Agent import os from dotenv import load_dotenv load_dotenv() # Initialize the agent with ChromaDB memory agent = Agent( agent_name="Financial-Analysis-Agent", model_name="deepseek/deepseek-chat", system_prompt="Agent system prompt here", agent_description="Agent performs financial analysis.", ) # Run a query agent.run("What are the components of a startup's stock incentive equity plan?") ``` ## R1 This is a simple example of how to use the DeepSeek Reasoner model otherwise known as R1. ```python import os from swarms import Agent from dotenv import load_dotenv load_dotenv() # Initialize the agent with ChromaDB memory agent = Agent( agent_name="Financial-Analysis-Agent", model_name="deepseek/deepseek-reasoner", system_prompt="Agent system prompt here", agent_description="Agent performs financial analysis.", ) # Run a query agent.run("What are the components of a startup's stock incentive equity plan?") ```