from pydantic import BaseModel, Field from transformers import AutoModelForCausalLM, AutoTokenizer from swarms import ToolAgent from swarms.tools.json_utils import base_model_to_json # Load the pre-trained model and tokenizer model = AutoModelForCausalLM.from_pretrained( "databricks/dolly-v2-12b", load_in_4bit=True, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b") # Initialize the schema for the person's information class Schema(BaseModel): name: str = Field(..., title="Name of the person") agent: int = Field(..., title="Age of the person") is_student: bool = Field( ..., title="Whether the person is a student" ) courses: list[str] = Field( ..., title="List of courses the person is taking" ) # Convert the schema to a JSON string tool_schema = base_model_to_json(Schema) # Define the task to generate a person's information task = ( "Generate a person's information based on the following schema:" ) # Create an instance of the ToolAgent class agent = ToolAgent( name="dolly-function-agent", description="Ana gent to create a child data", model=model, tokenizer=tokenizer, json_schema=tool_schema, ) # Run the agent to generate the person's information generated_data = agent.run(task) # Print the generated data print(f"Generated data: {generated_data}")