import os from dotenv import load_dotenv from termcolor import colored from swarms.models import OpenAIChat from swarms.prompts.code_interpreter import CODE_INTERPRETER from swarms.prompts.programming import DOCUMENTATION_SOP, TEST_SOP from swarms.structs import Agent load_dotenv() FEATURE = ( "Implement an all-new signup system in typescript using supabase" ) CODEBASE = """ import React, { useState } from 'react'; import UpperPanel from './UpperPanel'; import LowerPanel from './LowerPanel'; const MainPanel = () => { const [promptInstructionForLowerPanel, setPromptInstructionForLowerPanel] = useState(''); const [formData, setFormData] = useState(''); const [isLoading, setIsLoading] = useState(false); return (
); }; export default MainPanel; """ # Load the environment variables api_key = os.getenv("OPENAI_API_KEY") # Initialize the language agent llm = OpenAIChat( model_name="gpt-4", openai_api_key=api_key, temperature=0.5, max_tokens=4000, ) # Product Manager Agent init product_manager_agent = Agent( llm=llm, max_loops=1, sop=CODE_INTERPRETER, autosave=True ) # Initialize the agent with the language agent feature_implementer_frontend = Agent( llm=llm, max_loops=1, sop=CODE_INTERPRETER, autosave=True ) # Create another agent for a different task feature_implementer_backend = Agent( llm=llm, max_loops=1, sop=CODE_INTERPRETER, autosave=True ) # Create another agent for a different task tester_agent = Agent( llm=llm, max_loops=1, sop=TEST_SOP, autosave=True ) # Create another agent for a different task documenting_agent = Agent( llm=llm, max_loops=1, sop=DOCUMENTATION_SOP, autosave=True ) # Product Agent prompt def feature_codebase_product_agentprompt( feature: str, codebase: str ) -> str: prompt = ( "Create an algorithmic pseudocode for an all-new feature:" f" {feature} based on this codebase: {codebase}" ) return prompt # Product Manager Agent product_manager_out = product_manager_agent.run( feature_codebase_product_agentprompt(FEATURE, CODEBASE) ) print( colored( ( "---------------------------- Product Manager Plan:" f" {product_manager_out}" ), "cyan", ) ) # Feature Implementer Agent agent1_out = feature_implementer_frontend.run( f"Create the backend code for {FEATURE} in markdown based off of" f" this algorithmic pseudocode: {product_manager_out} the logic" f" based on the following codebase: {CODEBASE}" ) print( colored( ( "--------------------- Feature Implementer Code logic:" f" {agent1_out}" ), "cyan", ) ) # Tester agent tester_agent_out = tester_agent.run( f"Create tests for the following code: {agent1_out}" ) print( colored( ( "---------------------------- Tests for the logic:" f" {tester_agent_out}" ), "green", ) ) # Documentation Agent documenter_agent_out = documenting_agent.run( f"Document the following code: {agent1_out}" ) print( colored( ( "---------------------------- Documentation for the" f" logic: {documenter_agent_out}" ), "yellow", ) )