from swarms import Agent from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) import torch from swarms import BaseLLM from transformers import AutoTokenizer, LlamaForCausalLM class NvidiaLlama31B(BaseLLM): # Load the tokenizer and model def __init__(self, max_tokens: int = 2048): self.max_tokens = max_tokens model_path = "nvidia/Llama-3.1-Minitron-4B-Width-Base" self.tokenizer = AutoTokenizer.from_pretrained(model_path) device = "cuda" dtype = torch.bfloat16 self.model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=dtype, device_map=device ) def run(self, task: str): # Prepare the input text inputs = self.tokenizer.encode(task, return_tensors="pt").to( self.model.device ) # Generate the output outputs = self.model.generate( inputs, max_length=self.max_tokens ) # Decode and print the output output_text = self.tokenizer.decode(outputs[0]) print(output_text) return output_text # # Example usage: # model = NvidiaLlama31B() # out = model.run("What is the essence of quantum field theory?") # print(out) model = NvidiaLlama31B() # Initialize the agent agent = Agent( agent_name="Financial-Analysis-Agent_sas_chicken_eej", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, llm=model, max_loops=2, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=True, saved_state_path="finance_agent.json", user_name="swarms_corp", retry_attempts=1, context_length=200000, return_step_meta=True, disable_print_every_step=True, output_type="json", ) out = agent.run( "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria" ) print(out)