import os from dotenv import load_dotenv from swarm_models import OpenAIChat from swarms import Agent, GroupChat, expertise_based if __name__ == "__main__": load_dotenv() # Get the OpenAI API key from the environment variable api_key = os.getenv("GROQ_API_KEY") # Model model = OpenAIChat( openai_api_base="https://api.groq.com/openai/v1", openai_api_key=api_key, model_name="llama-3.1-70b-versatile", temperature=0.1, ) # Example agents agent1 = Agent( agent_name="Financial-Analysis-Agent", system_prompt="You are a friendly financial analyst specializing in investment strategies. Be approachable and conversational.", llm=model, max_loops=1, dynamic_temperature_enabled=True, user_name="swarms_corp", output_type="string", streaming_on=True, ) agent2 = Agent( agent_name="Tax-Adviser-Agent", system_prompt="You are a tax adviser who provides clear, concise, and approachable guidance on tax-related queries.", llm=model, max_loops=1, dynamic_temperature_enabled=True, user_name="swarms_corp", output_type="string", streaming_on=True, ) # agent3 = Agent( # agent_name="Stock-Buying-Agent", # system_prompt="You are a stock market expert who provides insights on buying and selling stocks. Be informative and concise.", # llm=model, # max_loops=1, # dynamic_temperature_enabled=True, # user_name="swarms_corp", # retry_attempts=1, # context_length=200000, # output_type="string", # streaming_on=True, # ) agents = [agent1, agent2] chat = GroupChat( name="Investment Advisory", description="Financial, tax, and stock analysis group", agents=agents, speaker_fn=expertise_based, ) history = chat.run( "How to save on taxes for stocks, ETFs, and mutual funds?" ) print(history.model_dump_json(indent=2))