from swarms import Agent from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) from swarms.prompts.moa_prompt import MOA_AGGREGATOR_SYSTEM_PROMPT from swarms.structs.mixture_of_agents import MixtureOfAgents # Initialize the equity analyst agents equity_analyst_1 = Agent( agent_name="Equity-Analyst-1", agent_description="Equity research analyst focused on fundamental analysis", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, max_loops=1, model_name="gpt-4.1", dynamic_temperature_enabled=True, ) equity_analyst_2 = Agent( agent_name="Equity-Analyst-2", agent_description="Equity research analyst focused on technical analysis", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, max_loops=1, model_name="gpt-4.1", dynamic_temperature_enabled=True, ) equity_analyst_3 = Agent( agent_name="Equity-Analyst-3", agent_description="Equity research analyst focused on quantitative analysis and risk modeling", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, max_loops=1, model_name="gpt-4.1", dynamic_temperature_enabled=True, ) swarm = MixtureOfAgents( name="Equity-Research-Swarm", agents=[equity_analyst_1, equity_analyst_2, equity_analyst_3], output_type="dict", layers=1, aggregator_system_prompt=MOA_AGGREGATOR_SYSTEM_PROMPT, ) out = swarm.run( task="Analyze Exchange-Traded Funds (ETFs) and stocks related to copper. Focus on fundamentals including supply/demand factors, production costs, major market participants, and recent price trends. Create a detailed analysis table in markdown.", ) print(out)