import os from swarms import Agent from swarm_models import OpenAIChat from dotenv import load_dotenv # Load environment variables load_dotenv() # Retrieve the OpenAI API key from the environment variable api_key = os.getenv("GROQ_API_KEY") # Initialize the model for OpenAI Chat model = OpenAIChat( openai_api_base="https://api.groq.com/openai/v1", openai_api_key=api_key, model_name="llama-3.1-70b-versatile", temperature=0.1, ) # Initialize the agent with automated prompt engineering enabled agent = Agent( agent_name="Financial-Analysis-Agent", system_prompt=None, # System prompt is dynamically generated agent_description=None, llm=model, max_loops=1, autosave=True, dashboard=False, verbose=False, dynamic_temperature_enabled=True, saved_state_path="finance_agent.json", user_name="Human:", return_step_meta=False, output_type="string", streaming_on=False, auto_generate_prompt=True, # Enable automated prompt engineering ) # Run the agent with a task description and specify the device agent.run( "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria", ## Will design a system prompt based on the task if description and system prompt are None device="cpu", ) # Print the dynamically generated system prompt print(agent.system_prompt)