# MCP Integration Demo Script ## 1. Setup & Architecture Overview ```bash # Terminal 1: Start Stock Server python examples/mcp_example/mock_stock_server.py # Terminal 2: Start Math Server python examples/mcp_example/mock_math_server.py # Terminal 3: Start Multi-Agent System python examples/mcp_example/mock_multi_agent.py ``` ## 2. Key Components ### Server-Side: - FastMCP servers running on ports 8000 and 8001 - Math Server provides: add, multiply, divide operations - Stock Server provides: price lookup, moving average calculations ### Client-Side: - Multi-agent system with specialized agents - MCPServerSseParams for server connections - Automatic task routing based on agent specialization ## 3. Demo Flow 1. Math Operations: ``` Enter a math problem: 5 plus 3 Enter a math problem: 10 times 4 ``` 2. Stock Analysis: ``` Enter a math problem: get price of AAPL Enter a math problem: calculate moving average of [10,20,30,40,50] over 3 periods ``` ## 4. Integration Highlights 1. Server Configuration: - FastMCP initialization - Tool registration using decorators - SSE transport setup 2. Client Integration: - MCPServerSseParams configuration - Agent specialization - Task routing logic 3. Communication Flow: - Client request → Agent processing → MCP server → Response handling ## 5. Code Architecture ### Server Example (Math Server): ```python @mcp.tool() def add(a: int, b: int) -> int: """Add two numbers together""" return a + b ``` ### Client Example (Multi-Agent): ```python calculator = MathAgent("Calculator", "http://0.0.0.0:8000") stock_analyst = MathAgent("StockAnalyst", "http://0.0.0.0:8001") ``` ## 6. Key Benefits 1. Modular Architecture 2. Specialized Agents 3. Clean API Integration 4. Scalable Design