import os from dotenv import load_dotenv from openai import OpenAI from swarms import Agent from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) load_dotenv() class DeepSeekChat: def __init__( self, api_key: str = os.getenv("DEEPSEEK_API_KEY"), system_prompt: str = None, ): self.api_key = api_key self.client = OpenAI( api_key=api_key, base_url="https://api.deepseek.com" ) def run(self, task: str): response = self.client.chat.completions.create( model="deepseek-chat", messages=[ { "role": "system", "content": "You are a helpful assistant", }, {"role": "user", "content": task}, ], stream=False, ) print(response) out = response.choices[0].message.content print(out) return out model = DeepSeekChat() # Initialize the agent agent = Agent( agent_name="Financial-Analysis-Agent", agent_description="Personal finance advisor agent", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, max_loops=1, llm=model, dynamic_temperature_enabled=True, user_name="swarms_corp", retry_attempts=3, context_length=8192, return_step_meta=False, output_type="str", # "json", "dict", "csv" OR "string" "yaml" and auto_generate_prompt=False, # Auto generate prompt for the agent based on name, description, and system prompt, task max_tokens=4000, # max output tokens ) print( agent.run( "Create a table of super high growth opportunities for AI. I have $40k to invest in ETFs, index funds, and more. Please create a table in markdown.", ) )